Answer:
4190.22 L = 4.19 m³.
Explanation:
- For the balanced reaction:
<em>2P₂ + 5O₂ ⇄ 2P₂O₅. </em>
It is clear that 2 mol of P₂ react with <em>5 mol of O₂ </em>to produce <em>2 mol of P₂O₅.</em>
- Firstly, we need to calculate the no. of moles of 6.92 kilograms of P₂O₅ produced through the reaction:
no. of moles of P₂O₅ = mass/molar mass = (6920 g)/(283.88 g/mol) = 24.38 mol.
- Now, we can find the no. of moles of O₂ is needed to produce the proposed amount of P₂O₅:
<u><em>Using cross multiplication:</em></u>
5 mol of O₂ is needed to produce → 2 mol of P₂O₅, from stichiometry.
??? mol of O₂ is needed to produce → 24.38 mol of P₂O₅.
∴ The no. of moles of O₂ needed = (5 mol)(24.38 mol)/(2 mol) = 60.95 mol.
- Finally, we can get the volume of oxygen using the general law of ideal gas:<em> PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 606.1 mm Hg/760 = 0.8 atm).
V is the volume of the gas in L (V = ??? L).
n is the no. of moles of the gas in mol (n = 60.95 mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (396.90°C + 273 = 669.9 K).
∴ V of oxygen needed = nRT/P = (60.95 mol)(0.0821 L.atm/mol.K)(669.9 K)/(0.8 atm) = 4190.22 L/1000 = 4.19 m³.
Put it in a beaker. Use a smaller beaker filled half way with ice and water and place in the larger one. It should be about an inch or two above the mixture. Heat over a Bunsen burner and the naphthalene will deposit on the bottom of smaller beaker.
And in this way, nephthalene be separated from the mixture of KBR and sand.
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms
Answer:
(iv) (A) is false, but (R) is true.
Explanation:
It is not true that carbon has a strong tendency to either lose or gain electrons to attain noble gas configuration. Carbon is a member of group 14, it is the first member of the group and carbon is purely a non metal. Only metals metals can loose electrons to attain the noble gas configuration. Moreover, carbon does not participate in ionic bonding so it does not gain electrons to attain the noble gas configuration.
However, carbon participates in covalent bonding where it is covalently bonded to four other chemical species using its four outermost electrons. Carbon forms covalent bonds in which four electrons are shared with other chemical species.