Answer:
itd be B because the melting point is 29.76 no matter the size
Explanation:
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.
Answer:
the answer is unsaturated
Explanation:
A saturated solution contains more solute per volume of solvent than an unsaturated solution. The solute has dissolved until no more can, leaving undissolved matter in the solution. ... In a supersaturated solution, there is more dissolved solute than in a saturated solution.
Answer:
When the batter hits the ball, there is a force applied, and energy is transferred. The ball will move in the direction the force is pushing it. If two objects collide, energy will be transferred between both, and there will be a change in motion.
Explanation:
The experiment that was carried out by Louisa goes to show us that different materials heat up at different rates.
<h3>What is the specific heat capacity?</h3>
The term specific heat capacity just goes to show us the amount of heat that must be absorbed before the temperature of an object would rise by 1 K. In this case, we can see that we have been told that the after 30 minutes, the sand had heated more than the water. This simply implies that the energy that the sand and the water absorbed was able to increase the temperature of the sand mush more than it increased the temperature of the water.
Thus we can see that the heat capacity of the sand is much less than the heat capacity of the water since the sand could be able to be heated up much faster than the the water could be heated up.
Learn more about heat capacity:brainly.com/question/28302909
#SPJ1