Answer:
subscribe other yt chanel
Explanation:
it will help you tu became big
<h3>
Answer:</h3>
0.75 moles NaOH
<h3>
Explanation:</h3>
We are given;
Volume of NaOH solution = 2.5 Liters
Molarity of NaOH = 0.300 M
We are required to calculate the moles of NaOH
We need to establish the relationship between moles, molarity and volume of a solution.
That would be;
Concentration/molarity = Moles ÷ Volume
Therefore;
Moles = Concentration × Volume
Thus;
Moles of NaOH = 0.300 moles × 2.50 L
= 0.75 moles
Therefore, the number of moles of NaOH is 0.75 moles
Answer: The strength of an acid or alkali depends on the degree of dissociation of the acid or alkali in water. The degree of dissociation measures the percentage of acid molecules that ionise when dissolved in water. He could use universal indicators or litmus paper for this.
i hope this helps you!
Answer:
Option E!
Explanation:
If we were to draw the lewis dot structure for IBr2 -, we would first count the total number of valence electrons ( " available electrons " ). Iodine has 7 valence electrons, and so does Bromine, but as Bromine exists in 2, the total number of valence electrons would be demonstrated below;

Don't forget the negative on the Bromine!
Now go through the procedure below;
1 ) Place Iodine in the middle and draw single bonds to each of the bromine.
2 ) Add three lone pairs on each of the Bromine's
3 ) Now we have 6 electrons left, if we were to exclude the electrons shared in the " single bonds. " This can be placed as three lone pairs on Iodine ( central atom )!
The molecular geometry can't be linear, as there are lone pairs on the atoms. This makes it bent.