Explanation:
Momentum = mass × Velocity
p = 62×73
p =4526
CaS is the empirical formula of the compound between calcium and sulphur that has the percent composition 55.6.
When percentages are given, we take a total mass of 100 grams.
Therefore the mass of each element is equal to the percentage given.
Mass of Ca = 55.6 g (given) of
S Mass = 44.4 g (100 - 55.6 = 44.4)
Step 1: Convert the given mass to moles.
moles Ca = given mass Ca / molar mass Ca
moles = 55.6 / 40 = 1.39 moles
mol S = specific mass S / molar mass S
mol = 44.4 / 32 = 1.39 mol
Step 2: Divide the molar ratio of each molar value by the smallest number of moles calculated.
For Ca = 1.39 / 1.39 = 1
For S = 1.39 / 1.39 = 1
The ratio of Ca : S = 1:1
Hence the empirical formula of the given compound will be CaS.
Learn more about empirical formula here : brainly.com/question/1496676
#SPJ4
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2
Answer:
energy is stored is 2.2 × 10⁻¹³ J
Explanation:
The capacitance of the cell is given with the expression
C = (KE₀A) / d
k is the dielectric constant, A is the area of the cell, d is the thickness of the cell.
Now given that; the diameter is 50,
Area A = 4πR²
A = 4π × ( 25 × 10⁻⁶ m)²
A = 7850×10⁻¹² m²
our capacitance C = (KE₀A) / d
C = [9 ( 8.85 × 10⁻¹² C²/N.m² × 7850×10⁻¹² m² )] / 7×10⁻⁹ m
C = 8.93 × 10⁻¹¹ F
Now Energy stored
E = 1/2 × CV²
E = 1/2 × (8.93 × 10⁻¹¹ F) × ( 70 × 10⁻³ V)²
E = 2.2 × 10⁻¹³ J
Therefore energy is stored is 2.2 × 10⁻¹³ J