Answer:
The correct answer is "The rigid body can have rotational and transnational motion, as long as it's transnational and angular accelerations are equal to zero."
Explanation:
A rigid body by definition does not deform when forces act on it. In case of static equilibrium a rigid body cannot have any sort of motion while in case of dynamic equilibrium it can move but with constant velocities only thus having no acceleration weather transnational or angular.
The net force on the charge at the origin is -1.2×10-8
<u>Explanation:</u>
Solving the problem,
- Draw the x-axis and the locations of the given three charges.
- The forces applied on the charge at the origin and there are two of them, and since all the changes are positive, all the forces are repulsive.
- we have the formula, F = kq1Q/r².
- F1 = kq1Q/r²1 = (9.0*109Nm²/C²)(2.2*10^-9C)(3.5*10^-9C)/(1.5m)² = 31*10-9N = 3.1*10-8N. F1 points to the right (+x direction).
- F2 = kq2Q/r²2 = (9.0*109Nm²/C²)(5.4*10^-9C)(3.5*10^-9C)/(2.0m)² = 43*10^-9N = 4.3*10^-8N.
- F2 points to the left (-x direction).
- To find the net force we have to subtract the force F1 and force F2 .
- The net force is F(origin) = F1 - F2 = -1.2×10-8N.
<u></u>
<u></u>
<u></u>
<u></u>
the missing word is clockwise moment. I hope this helps good luck
Answer:
The distance is 3.1 m
Explanation:
The position vector of the fly relative to the corner of the wall is
r = (3.1, 0.5).
The distance of the fly from the corner will be calculated as the magnitude of the vector "r"
magnitude of vector 
Since the numbers to be added have only one decimal place 3.<u>1</u> and 0.<u>5</u>, the result of the sum will have to have one decimal place. The result of the square root will also have one decimal place.