More energy is released in nuclear reactions than in chemical reactions; this is because in nuclear reactions, mass is converted to energy. Nuclear energy released in nuclear fission and fusion is several 100 million times as large as an ordinary chemical reaction like the combustion process. The reason why nuclear energy release so much energy is because tremendous amounts of energy is released at one time. The nuclei in a nuclear reaction undergo a chain reaction, causing the neutrons to move extremely fast and release high amounts of energy.
Answer:
potential difference V= 300 volts
Explanation:
Given:
d= 2.0 cm = 0.02m
E = 15 kN/C = 15 × 10³ N/C
For a uniform field between two plates, the Electric Filed Intensity (E) is proportional to the potential difference (V) and inversely proportional to distance between the plates.
E= V/d
⇒ V= E×d = 15 × 10³ N/C × 0.02 m = 300 volts (∴1 Nm/C = 1 J/C= 1 volts)
Answer: Volcanoes and ridges are landforms that are created by the movement of tectonic plates.
Explanation:
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:
Increases
Increases
Increases
Explanation:
I don't know if you answered your own question but I'll just answer this for others confused ahh