<h3>
Answer: b) 0.250 mol</h3>
============================================
Work Shown:
Using the periodic table, we see that
- 1 mole of carbon = 12 grams
- 1 mole of oxygen = 16 grams
These are approximations and these values are often found underneath the atomic symbol. For example, the atomic weight listed under carbon is roughly 12.011 grams. I'm rounding to 2 sig figs in those numbers listed above.
So 1 mole of CO2 is approximately 12+2*16 = 44 grams. The 2 is there since we have 2 oxygens attached to the carbon atom.
-------------------
Since 1 mole of CO2 is 44 grams, we can use that to convert from grams to moles.
11.0 grams of CO2 = (11.0 grams)*(1 mol/44 g) = (11.0/44) mol = 0.250 mol of CO2
In short,
11.0 grams of CO2 = 0.250 mol of CO2
This is approximate.
We don't need to use any of the information in the table.
An aqueous solution of hydrozen chloride: Strongly corrosive acids
A colouriess punpent liquid widely used in manufacturing plastic and pharmaceutical
Eta Carinae could be as large as 180 times the radius of the Sun, and its surface temperature is 36,000-40,000 Kelvin. Just for comparison, 40,000 Kelvin is about 72,000 degrees F. So it's the blue hypergiants, like Eta Carinae, which are probably the hottest stars in the Universe.
Answer:
Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity.
Explanation:
Ninety-five nuclear reactors in 29 states generate nearly 20 percent of the nation's electricity, all without carbon emissions because reactors use uranium, not fossil fuels.
// have a great day //
Answer:
Explanation:
<u>1. Molecular chemical equation:</u>
- 2 KClO₃(s) → 2 KCl(s) + 3 O₂(g)
<u>2. Mole ratios:</u>
- 2 mol KClO₃ : 2 mol KCl : 3 mol O₂
<u>3. Number of moles of KClO₃</u>
- Number of moles = mass in grams / molar mass
- Molar mass of KClO₃ = 122.55 g/mol
- Number of moles of KClO₃ = 54.3 g / 122.5 g/mol ≈ 0.44308 mol
<u>3. Number of moles of O₂</u>
As per the theoretical mole ratio 2 mol of KClO₃ produce 3 mol of O₂, then set up a proportion to determine how many moles of O₂ will be produced from 0.44038 mol of KClO₃.
- 3 mol O₂ / 2 mol KClO₃ = x / 0.44038 mol KClO₃
- x = (3 / 2) × 0.44308 mol O₂ = 0.6646 mol O₂
Round to 3 significant figures: 0.665 mol of O₂ ← answer