Voltage = (current) x (resistance)
= (19 A) x (14 ohms) = 266 volts .
Note: Be careful using that thing !
It's dissipating
I² R = (19 A)² x (14 ohms) = 5,054 watts ! ! !
That's an awful lot of power for a blow-dryer !
The dryer is certainly not using very much of that power to run the fan.
Most of it is being used to heat air. 5 kilowatts is more power than most
toasters or microwave ovens use, so please be careful with how much of
your hair or skin you expose to that hot-air blast. You could probably cook
a meatloaf with it.
Answer:
It has the least potential energy at the bottom of its circular path.
Explanation:
It has the least potential energy at the bottom of its circular path.
Remember the equation
U = m*g*h
where U is the potential energy
m is the mass of the yo-yo
h is the height
To break this problem down, let's start with what we know. The equation given finds one component of the velocity and multiplies it by the change in time. This will not find the acceleration that the first two answers say it will, meaning that the answer isn't A or B.
That leaves us with the final two answers, C and D. If the projectile was launched horizontally and we were trying to find the horizontal displacement, we wouldn't need to use cosθ to find the horizontal velocity, meaning that our answer is most likely C) <span>the horizontal displacement of a projectile launched at an angle!</span><span />
Airplane with nose up: The plane's speed through the air is the square root of (80 m/s squared) plus (120 m/s squared. The whole picture is a right triangle, and the plane's speed is the hypotenuse. The angle is the angle whose tangent is (80/120). You can get it from a calculator, a book, a slide rule, or online from the site that rhymes with floogle.
The man pulling the load is also a right triangle. The horizontal component is (hypotenuse) times (cosine of the angle). The vertical component is (hypotenuse) times (sine of the same angle). Fill in what you know, look up the sin and cos of 25 degrees and write those in too, and then you can solve for what you have to find.
I’m going to assume initial velocity is 0.
Use Newton’s second law:
F = m•a
F/m = a
14.0/32.5kg= 28/65 m/s^2
Use constant SUVAT acceleration formulae:
S- displacement - what we need to find out
U - initial velocity - 0
V
A - 28/65 m/s^2
T - 10 seconds
S = ut + 1/2at^2
Since u = 0
S = 1/2at^2
1/2• 28/65 • 10^2 = 21.5metres~
Answer is 21.5 metres
~Hoodini, here to help.