1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
9

How far from a converging lens with a focal length of 16 cm should an object be placed to produce a real image which is the same

size as the object? Express your answer using two significant figures.
Physics
1 answer:
Feliz [49]3 years ago
4 0

Answer:

32 cm

Explanation:

f = focal length of the converging lens = 16 cm

Since the lens produce the image with same size as object, magnification is given as

m = magnification = - 1

p = distance of the object from the lens

q = distance of the image from the lens

magnification is given as

m = - q/p

- 1 = - q/p

q = p                                    eq-1

Using the lens equation, we get

1/p + 1/q = 1/f

using eq-1

1/p + 1/p = 1/16

p = 32 cm

You might be interested in
A block of mass m1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. it collides with block of mass m2 = 1.7
maxonik [38]
First, let's find the speed v_i of the two blocks m1 and m2 sticked together after the collision.
We can use the conservation of momentum to solve this part. Initially, block 2 is stationary, so only block 1 has momentum different from zero, and it is:
p_i = m_1 v_1
After the collision, the two blocks stick together and so now they have mass m_1 +m_2 and they are moving with speed v_i:
p_f = (m_1 + m_2)v_i
For conservation of momentum
p_i=p_f
So we can write
m_1 v_1 = (m_1 +m_2)v_i
From which we find
v_i =  \frac{m_1 v_1}{m_1+m_2}= \frac{(3.5 kg)(6.3 m/s)}{3.5 kg+1.7 kg}=4.2 m/s

The two blocks enter the rough path with this velocity, then they are decelerated because of the frictional force \mu (m_1+m_2)g. The work done by the frictional force to stop the two blocks is
\mu (m_1+m_2)g  d
where d is the distance covered by the two blocks before stopping.
The initial kinetic energy of the two blocks together, just before entering the rough path, is
\frac{1}{2} (m_1+m_2)v_i^2
When the two blocks stop, all this kinetic energy is lost, because their velocity becomes zero; for the work-energy theorem, the loss in kinetic energy must be equal to the work done by the frictional force:
\frac{1}{2} (m_1+m_2)v_i^2 =\mu (m_1+m_2)g  d
From which we can find the value of the coefficient of kinetic friction:
\mu =  \frac{v_i^2}{2gd}= \frac{(4.2 m/s)^2}{2(9.81 m/s^2)(1.85 m)}=0.49
3 0
3 years ago
If a 375 watt heater has a current of 5.0 A, what is the resistance of the heating element?
liberstina [14]
P=IV
V=IR

P=I(IR)
P=I²R
375=5²R
R=375/25
R=15
7 0
3 years ago
22. State any three features of the electroscope.​
MatroZZZ [7]
-1- was created in the 1600 by william gilbert
-2-When the charge is positive, electrons in the metal of the electroscope are attracted to the charge and move upward out of the leaves. This results in the leaves to have a temporary positive charge and because like charges repel, the leaves separate. When the charge is removed, the electrons return to their original positions and the leaves relax
3-

An electroscope is made up of a metal detector knob on top which is connected to a pair of metal leaves hanging from the bottom of the connecting rod. When no charge is present the metals leaves hang loosely downward. But, when an object with a charge is brought near an electroscope, one of the two things can happen.
7 0
2 years ago
BEST ANSWER GETS BRAINLIEST!!!!!!!!!!
denis-greek [22]

Answer:

There are Microwaves, the type of electro magnetic radiation is a Micro-wave. We use x-rays, the type of electro magnetic radiation is a gamma wave. We also use radios, the type of electro magnetic radiation is a radio wave.

Explanation:

I remember doing this assignment too

8 0
3 years ago
Rocket engineers use newton's third law during launch. identify the action force.
rosijanka [135]
The answer is A. Newton's third law of motion states that for every action, there is an equal and opposite reaction. A rocket exerts a large force on the gas that is in the rocket chamber (action). The gas thus exerts a large reaction force forward on the rocket (reaction). The large reaction force is called thrust.
6 0
3 years ago
Read 2 more answers
Other questions:
  • WILL GIVE BRAINLIEST!
    8·1 answer
  • According to the chart, one gram of copper and
    10·1 answer
  • An electron moves through a uniform electric field E = (2.00î + 5.40ĵ) V/m and a uniform magnetic field B = 0.400k T. Determine
    6·1 answer
  • April swims 50m north and then turns and swims back to the south. What is her velocity if it takes 60 seconds
    5·1 answer
  • Atoms with many electron shells will let go of their electrons more easily than those with fewer shells.
    5·2 answers
  • Determine the position in which a solid cylindrical block of wood of diameter 0.3 m and length 0.4 m will float in water. Take s
    15·1 answer
  • What is the difference between temperature and heat???
    15·1 answer
  • The sine of the incident angle is 0.217; the sine of the refracted angle is 0.173. Calculate the index of refraction.
    7·2 answers
  • HURRY PLEASE
    13·1 answer
  • What is the acceleration of a car that goes from 4m/s to 8m/s in 2s use the guess method​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!