T² caries directly as R³ .
This is Kepler's 3rd law of planetary motion .
I would say option D, it depends on the size of the star
They are called stem cells. This cells are undifferentiated which means it can specialize in other types when it receives the right stimuli. They can divide through mitoses and become more stem cell or become a bone, muscle, blood cell, etc.
They can have 2 origins: embryos or some human tissue; their function is to regenerate or substitute damaged cells
I think it’s 15cm
Might be 7cm
Answer:
Imp = 25 [kg*m/s]
v₂= 20 [m/s]
Explanation:
In order to solve these problems, we must use the principle of conservation of linear momentum or momentum.
1)

where:
m₁ = mass of the object = 5 [kg]
v₁ = initial velocity = 0 (initially at rest)
F = force = 5 [N]
t = time = 5 [s]
v₂ = velocity after the momentum [m/s]
![(5*0) +(5*5) = (m_{1}*v_{2}) = Imp\\Imp = 25 [kg*m/s]](https://tex.z-dn.net/?f=%285%2A0%29%20%2B%285%2A5%29%20%3D%20%28m_%7B1%7D%2Av_%7B2%7D%29%20%3D%20Imp%5C%5CImp%20%3D%2025%20%5Bkg%2Am%2Fs%5D)
2)
![(m_{1}*v_{1})+(F*t)=(m_{1}*v_{2})\\(0.075*0)+(30*0.05)=(0.075*v_{2})\\v_{2}=20 [m/s]](https://tex.z-dn.net/?f=%28m_%7B1%7D%2Av_%7B1%7D%29%2B%28F%2At%29%3D%28m_%7B1%7D%2Av_%7B2%7D%29%5C%5C%280.075%2A0%29%2B%2830%2A0.05%29%3D%280.075%2Av_%7B2%7D%29%5C%5Cv_%7B2%7D%3D20%20%5Bm%2Fs%5D)