Answer:
F = GMmx/[√(a² + x²)]³
Explanation:
The force dF on the mass element dm of the ring due to the sphere of mass, m at a distance L from the mass element is
dF = GmdM/L²
Since the ring is symmetrical, the vertical components of this force cancel out leaving the horizontal components to add.
So, the horizontal components add from two symmetrically opposite mass elements dM,
Thus, the horizontal component of the force is
dF' = dFcosФ where Ф is the angle between L and the x axis
dF' = GmdMcosФ/L²
L² = a² + x² where a = radius of ring and x = distance of axis of ring from sphere.
L = √(a² + x²)
cosФ = x/L
dF' = GmdMcosФ/L²
dF' = GmdMx/L³
dF' = GmdMx/[√(a² + x²)]³
Integrating both sides we have
∫dF' = ∫GmdMx/[√(a² + x²)]³
∫dF' = Gm∫dMx/[√(a² + x²)]³ ∫dM = M
F = GmMx/[√(a² + x²)]³
F = GMmx/[√(a² + x²)]³
So, the force due to the sphere of mass m is
F = GMmx/[√(a² + x²)]³
ANSWER - (1) are constantly moving (2) have volume (3) have intermolecular forces (4) undergo perfectly elastic collisions (5) have an average kinetic energy proportional to the ideal gas’s absolute temperature
B) Weather changes day to day, while climate changes region to region.
Climate is the weather in a certain area. It's usually the average weather over a long period of time
Weather is in shorter terms then climate
Hope this helped!
~Just a girl in love with Shawn Mendes
need speed of sound on lhs
<span>When two waves of same frequency travel in a medium simultaneously in the same direction then, due to their superposition, the resultant intensity at any point of the medium is different from the sum of intensities of the two waves. At certain points the intensity of the resultant wave has a large value while at some points it has a very small or zero. This is called wave interference.</span>