Answer:
T = 153.72 N
Explanation:
For this exercise we must use the conditions of translational and rotational equilibrium.
Let's set a frame of reference on the hinge, start by writing the rotational equilibrium relationship, suppose counterclockwise rotation is positive
We look for the components of the cable tension with trigonometry
cos 37 = Tₓ / T
sin 37 =
/ T
Tₓ = T cos 37
T_{y} = T sin 37
the expression for rotational equilibrium is
T_{y} L + Tₓ 0 - W L / 2 - W_light 0.55 = 0
where L is the length L= 1.8 m,
T_{y} = (W L/2 + W_lght 0.55) / L
T sin 37 = Mg /2 + m_light g 0.55 / L
T = (M / 2 + m_light 0.55 / L) g / sin 35
let's calculate
T = (15/2 + 4.9 0.55 / 1.8) 9.8 / sin 35
T = 153.72 N
Answer:
Temperature on Jupiter and Saturn are too high for methane to condense.
Explanation:
However, methane can condense on Uranus and Neptune because they are farther from the sun and hence colder.
Answer:
The speed of the water shoot out of the hole is 20 m/s.
(d) is correct option.
Explanation:
Given that,
Height = 20 m
We need to calculate the velocity
Using formula Bernoulli equation

Where,
v₁= initial velocity
v₂=final velocity
h₁=total height
h₂=height of the hole from the base
Put the value into the formula




Hence, The speed of the water shoot out of the hole is 20 m/s.
The tires deflated and so that means that you won’t be able to travel