Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
f.The period is independent of the suspended mass.
Explanation:
The period of a pendulum is given by

where
L is the length of the pendulum
g is the acceleration due to gravity
From the formula, we see that:
1) the period of the pendulum depends only on its length, L, and it is proportional to the square root of the length
2) the period does not depend neither on the mass of the pendulum, nor on its amplitude of oscillation
So, the only correct statements are
f.The period is independent of the suspended mass.
Note: statement "e.The period is proportional to the length of the wire" is also wrong, because the period is NOT proportional to the length of the wire, but it is proportional to the square root of it.
Producers, consumers, and decomposers help to move matter and energy through ecosystems.
Hope this helps! :)
Answer:
i dont know
Explanation:
i dont know since you didn't provide something to base off of
Answer:
1 W = 1 J / sec Definition of watt is 1 joule / sec
So if a bulb uses 75 J / sec it must use
75 J/s * 60 sec / min = 4500 J/min energy used by bulb
If bulb is 15% efficient then the light delivered is
P = 4500 J / min * .15 = 675 J / min