1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Makovka662 [10]
3 years ago
5

Which statement correctly compares sound and light waves?

Physics
2 answers:
STatiana [176]3 years ago
5 0

Answer:

answer: D (in edg)

Explanation:

jek_recluse [69]3 years ago
4 0

Answer:light waves carry energy parallel to the motion Of The wave, while sound waves carry energy perpendicular to it

Explanation:light waves carry energy parallel to the motion Of The wave while sound waves carry energy perpendicular to it

You might be interested in
What may thermal energy stores also be called?<br><br> PLEASE REALLY NEED THE HELP!
ollegr [7]

Answer:

The thermal energy is the sum of the potential energy and kinetic energy that is known to make all the particle in an object it is the energy that is responsible for its temperature heat is the flow of thermal energy thermal energy is the result of something that has some internal temperature which can be measured

3 0
2 years ago
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
"A block of metal weighs 40 N in air and 30 N in water. What is the buoyant force on the block due to the water? The density of
Alja [10]

Answer:

buoyant force on the block due to the water= 10 N

Explanation:

We know that

buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.

Given:

A block of metal weighs 40 N in air and 30 N in water.

F_B =  40-30= 10 N

therefore,  buoyant force on the block due to the water= 10 N

6 0
2 years ago
Read 2 more answers
Which of the following is NOT accelerating?
ivolga24 [154]
I would say the answer to your question is A Ferris wheel turning at a constant speed. The reasoning behind this answer is the fact that traveling in a constant direction at a constant speed is not accelerating. The Ferris wheel is the only option that fits this description. The last option would be incorrect due to independent causes such as speed limit changes as well as turns and stops on the highway.
7 0
3 years ago
Pls hurry worth 28 points &lt;3
Kipish [7]

Answer:

Explanation:

I will GUESS that we're supposed to be looking at a plot of a position in time.

IF that is the case.

THEN the answer would be Point B because it has the steepest slope.

6 0
3 years ago
Other questions:
  • Identical marbles are released from the same height on each of the following four frictionless ramps . Compare the speed of the
    8·1 answer
  • Which of the following are in the correct order from smallest or largest?
    11·2 answers
  • How can philosophy help you become a productive citizen<br>​
    13·1 answer
  • A hot-water bottle contains 787 g of water at 75∘C. If the liquid water cools to body temperature (37 ∘C), how many kilojoules o
    8·2 answers
  • Find the percentage of the total work lost to friction if 28.7 J of work is put into pushing a block up a ramp resulting in 14.2
    8·1 answer
  • Explain in terms of the arrangement of particles the kinetic theory of matter​
    15·1 answer
  • Which is the balanced equation for Sg + O2 → SO2?
    6·1 answer
  • Acceleration is a change in speed or direction over time. In what two ways does the sled accelerate as it descends?
    10·1 answer
  • What is the acceleration of a bike that starts from rest and after 10s is traveling 20m/s?
    15·1 answer
  • Pls I need it fast , its for my homework and I can’t find it
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!