Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
Answer:
19.1 deg
Explanation:
v = speed of the proton = 8 x 10⁶ m/s
B = magnitude of the magnetic field = 1.72 T
q = magnitude of charge on the proton = 1.6 x 10⁻¹⁹ C
F = magnitude of magnetic force on the proton = 7.20 x 10⁻¹³ N
θ = Angle between proton's velocity and magnetic field
magnitude of magnetic force on the proton is given as
F = q v B Sinθ
7.20 x 10⁻¹³ = (1.6 x 10⁻¹⁹) (8 x 10⁶) (1.72) Sinθ
Sinθ = 0.327
θ = 19.1 deg
<span>A theory is a hyothesis that has been varified by multiple investigations.
true</span>
171.0798 M/S
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s2.
Was this helpful