Answer:
45C in a minute is
45/60 C in a second
.75 C in a second is 3/4 of an ampere.
Explanation:
Answer:
that best describes the process is C
Explanation:
This problem is a calorimeter process where the heat given off by one body is equal to the heat absorbed by the other.
Heat absorbed by the smallest container
Q_c = m ce (
-T₀)
Heat released by the largest container is
Q_a = M ce (T_{i}-T_{f})
how
Q_c = Q_a
m (T_{f}-T₀) = M (T_{i} - T_{f})
Therefore, we see that the smaller container has less thermal energy and when placed in contact with the larger one, it absorbs part of the heat from it until the thermal energy of the two containers is the same.
Of the final statements, the one that best describes the process is C
since it talks about the thermal energy and the heat that is transferred in the process
Answer:
Car B has a mass of 800 kg.
General Formulas and Concepts:
<u>Momentum</u>
Law of Conservation of Momentum: 
Explanation:
<u>Step 1: Define</u>
<em>Identify variables</em>
[Given] m₁ = 1200 kg
[Given] v₁i = 10 m/s
[Solve] m₂
[Given] v₂i = 0 m/s
[Given] vf = 6 m/s
<u>Step 2: Solve for m₂</u>
- Substitute in variables [Law of Conservation of Momentum]: (1200 kg)(10 m/s) + m₂(0 m/s) = (1200 kg + m₂)(6 m/s)
- Multiply: 12000 kg · m/s = (1200 kg + m₂)(6 m/s)
- Isolate m₂ term: 2000 kg = 1200 kg + m₂
- Isolate m₂: 800 kg = m₂
Answer:
Angular acceleration = 5 rad /s ^2
Kinetic energy = 0.391 J
Work done = 0.391 J
P =6.25 W
Explanation:
The torque is given as moment of inertia × angular acceleration
angular acceleration = torque/ moment of inertia
= 10/2= 5 rad/ s^2
The kinetic energy is = 1/2 Iw^2
w = angular acceleration/time
=5/8= 0.625 rad /s
1/2 × 2× 0.625^2
=0.391 J
The work done is equal to the kinetic energy of the motor at this time
W= 0.391 J
The average power is = torque × angular speed
= 10× 0.625
P = 6.25 W
Answer:
https://www.google.com/search?q=A+metal+sphere+is+neutral+because+it+has+an+equal+number+of+protons+and+electrons.+Draw+how+the+charges+in+the+sphere+are+redistributed+when+a+negatively+charged+rod+is+brought+near+it.&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiixouw2IDiAhUIbawKHaYzBaMQ_AUIDigB&biw=1455&bih=688#imgrc=3YSBhnGs0Hz80M:
go here