When the system is experiencing a uniformly accelerated motion, there are a set of equations to work from. In this case, work is energy which consist solely of kinetic energy. That is, 1/2*m*v2. First, let's find the final velocity.
a = (vf - v0)/t
2.6 = (vf - 0)/4
vf = 10.4 m/s
Then W = 1/2*(2100 kg)*(10.4 m/s)2
W = 113568 J = 113.57 kJ
Answer: 90 meters
Explanation: 60/20=3 and 3*30=90 so it is 90 meters.
C is the correct answer.
all substances found on the periodic table are elements by definition. anything that is created using elements, such as methane, carbon dioxide, or water, are all compounds.
Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.