Displacement is a vector quantity. So, you incorporate the vector calculations when you try to determine the resultant vector. This is the shortest path from the starting point to the endpoint. If they are moving on one axis only, you use sign conventions. For motions moving to the left, use the negative sign. If it's moving to the right, then use the positive sign. Now, it the object moves 2 km to the left, and 2 km also to the right, the displacement is zero.
Displacement = 2 km - 2km = 0
Generally, the equation is:
<span>Displacement = Distance of motion to the right - Distance of motion to the left</span>
Answer:
T= 5.18N
Explanation:
u = mass of chord / length of chord
u = 0.49/ 7.3
u = 0.067 kg/m
Velocity of sound waves (v) =length of chord / time taken for wave to travel
v = 7.3 / 0.83 = 8.795m/s
Tension is calculated below using the formula
T = v² * u
T = (8.795)² x 0.067
T= 5.18N
Answer:
a = 2 m/s2
Explanation:
we know from newtons 2nd law
F = ma.
we also know that from hookes law we have
F = kx
equate both value of force to get value of acceleration
kx = ma,
where,
k is spring constant = 8.0 N/m
x is maximum displacement 0.10 m
m is mass of object 0.40 kg
a = \frac{kx}{m}
= \frac{8 *0 .10}{0.40}
a = 2 m/s2
Answer:
The order of magnitude of the distance from the sun to Earth is 10⁸ km.
Explanation:
The order of magnitude of the distance from the sun to Earth can be calculated as follows:

Where:
c: is the speed of light = 3x10⁸ m/s
t: is the time = 8 min
Hence, the distance is:

Therefore, the order of magnitude of the distance from the sun to Earth is 10⁸ km.
I hope it helps you!