Answer:
CaS, CaBr₂, VBr₅, and V₂S₅.
Explanation:
- The ionic compound should be neutral; the overall charge of it is equal to zero.
- Binary ionic compound is composed of two different ions.
<u>Ca²⁺ can combined with either Br⁻ or S²⁻ to form binary ionic compounds.</u>
- CaS can be formed via combining Ca²⁺ with S²⁻ to form the neutral binary ionic compound CaS.
- CaBr₂ can be formed via combining 1 mole of Ca²⁺ with 2 moles of Br⁻ to form the neutral binary ionic compound CaBr₂.
<u>V⁵⁺ can combined with either Br⁻ or S²⁻ to form binary ionic compounds.</u>
- V₂S₅ can be formed via combining 2 moles of V⁵⁺ with 5 moles of S²⁻ to form the neutral binary ionic compound V₂S₅.
- VBr₅ can be formed via combining 1 mole of V⁵⁺ with 5 moles of Br⁻ to form the neutral binary ionic compound VBr₅.
<em>So, the empirical formula of four binary ionic compounds that could be formed is: CaS, CaBr₂, VBr₅, and V₂S₅.</em>
<em></em>
The preparation of lead (ii) sulphate from lead (ii) carbonate occurs in two steps:
- insoluble lead carbonate is converted to soluble lead (ii) nitrate
- soluble lead (ii) nitrate is reacted with sulphuric acid to produce lead (ii) sulphate.
<h3>How can a solid sample of lead (ii) sulphate be prepared from lead (ii) carbonate?</h3>
Lead (ii) carbonate and lead (ii) sulphate are both insoluble salts of lead.
In order to prepare lead (ii) sulphate, a two step process is performed.
In the first step, Lead (ii) carbonate is reacted with dilute trioxonitrate (v) acid to produce lead (ii) nitrate.
- PbCO₃ + 2HNO₃ → Pb(NO₃)₂ + CO₂ + H₂O
In the second step, dilute sulfuric acid is reacted with the lead (ii) nitrate to produce insoluble lead (ii) sulphate which is filtered and dried.
- Pb(NO₃)₂ + H₂SO₄ → PbSO₄ + 2HNO₃
In conclusion, lead (ii) sulphate is prepared in two steps.
Learn more about lead (ii) sulphate at: brainly.com/question/188055
#SPJ1
Answer: Out of the given options
is expected to have the highest viscosity.
Explanation:
The resistance occurred in the flow of a liquid substance is called viscosity.
More stronger is the intermolecular forces present in a substance more will be its resistance in its flow. Hence, more will be its viscosity.
For example,
has strong intermolecular hydrogen bonding than the one's present in
and
. This is because two-OH groups are present over here.
Thus, we can conclude that out of the given options
is expected to have the highest viscosity.
Answer:
Nuclear fusion is when two atomic nuclei combine and form one nucleus. Nuclear fusion generates all of the Sun's energy. Inward pulling by the Sun's gravity is counteracted by outward pushing by the Sun's nuclear fusion; this balance keeps the sun from collapsing or exploding.
Explanation: