Answer:
10×2=20
10×2÷64=??
I am not sure what you are trying to say...
Answer:
This will require 266.9 of heat energy.
Explanation:
To calculate the energy required to raise the temperature of any given substance, here's what you require:The mass of the material, m The temperature change that occurs, ΔT The specific heat capacity of the material,
c
(which you can look up). This is the amount of heat required to raise 1 gram of that substance by 1°C.
Here is a source of values of
c for different substances:
Once you have all that, this is the equation:
Q=m×c×ΔT(Q is usually used to symbolize that heat required in a case like this.)For water, the value of c is 4.186g°C So, Q=750×4.186×85=266=858=266.858
It is through biopsychological feedback.
A class of chemical called a neurotransmitter is important in the transmission of nerve impulses. Neurotransmitters are packaged by the cell into small, membrane-bound sacs called vesicles. Upon receiving a chemical signal, the vesicles move toward the cell membrane and fuse with it, releasing the enclosed neurotransmitters from the terminal end of the nerve cell.
Answer:
B 14.5 m/s to the east
Explanation:
We can solve this problem by using the law of conservation of momentum.
In fact, if the system is isolated, the total momentum of the system must be conserved.
Here the total momentum before the stuntman reaches the skateboard is:

where
M = 72.0 kg is the mass of the stuntman
v = 15.0 m/s is his initial velocity (to the east)
The total momentum after the stuntmen reaches the skateboard is:

where
m = 2.50 kg is the mass of the skateboard
v' is the final velocity of the stuntman and the skateboard
Since momentum must be conserved, we have

And solvign for v',

And since the sign is the same as v, the direction is the same (to the east).
Answer:
South = 1.5m
West =4.2m
Explanation:
Kindly see attached a rough draft of the situation
Step one
Given data
From the sketch the direction of the player is along the resultant of the triangle, corresponding to the Hypotenuse
Step two:
Hence for an opponent to tackle him towards the south, he must be at
sin θ= opp/hyp
sin 20=x/4.5
x=sin 20*4.5
x=0.342*4.5
x= 1.5m
Also, for an opponent to tackle him towards the south, he must be at
cos θ= adj/hyp
cos 20=y/4.5
y=cos 20*4.5
y=0.93*4.5
y= 4.2m