<h3><u>Answer;</u></h3>
= 73 N
<h3><u>Explanation</u>;</h3>
Using the formula
2 T cos(30°) = w
Where; T is the tension on each string, while w is the weight of the box given by mg
Therefore;
W = 2Tcos 30°
= 2 × 42 cos 30°
= 84 cos 30°
= 72.74
<u> ≈ 73 N</u>
The answer is B.
This is because you add up all of the times (1.44s+1.70s+1.58s+1.76s) and you get 6.48 then you divide 6.48 by 4 to get the average of the times. Now you get the distance (200m) and because speed=distance/time you divide 200m/1.62s to get 123m/s. I hope this made sense :)
All of those are true, except the one about the radius.
Both ends of a chord have to be on the circle, but one end
of a radius is at the center, so a radius can't be a chord.
When the temperature of an object that is giving off light is increased, the particles in the object will move at a faster rate and there will be increased vibration of these molecules. This will makes the object to emit more light and to shine more brightly.
To develop this problem we will apply the concepts related to the Electromagnetic Force. The magnetic force can be defined as the product between the free space constant, the current (of each cable) and the length of these, on the perimeter of the cross section, in this case circular. Mathematically it can be expressed as,

Here,
= Permeability free space
I = Current
L = Length
d= Distance between them
Our values are,




Rearranging the previous equation to find the current,





Therefore the current in the rods is 210.6A