Answer:
Centripetal force is the force that keeps the yoyo going in a circle, if the string breaks, the yoyo would would fly off in a direction that is different to the point on the circle.
Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
Use this formula to find your answer...
Determine the frequency of a clock waveform whose period is 2us or (micro) and 0.75ms
frequency (f)=1/( Time period).
Frequency of 2 us clock =1/2*10^-6 =10^6/2 =500000Hz =500 kHz.
Frequency of 0..75ms clock =1/0.75*10^-3 =10^3/0.75 =1333.33Hz =1.33kHz.
Answer:
Change in electric potential energy ∆E = 365.72 kJ
Explanation:
Electric potential energy can be defined mathematically as:
E = kq1q2/r ....1
k = coulomb's constant = 9.0×10^9 N m^2/C^2
q1 = charge 1 = -2.1C
q2 = charge 2 = -5.0C
∆r = change in distance between the charges
r1 = 420km = 420000m
r2 = 160km = 160000m
From equation 1
∆E = kq1q2 (1/r2 -1/r1) ......2
Substituting the given values
∆E = 9.0×10^9 × -2.1 ×-5.0(1/160000 - 1/420000)
∆E = 94.5 × 10^9 (3.87 × 10^-6) J
∆E = 365.72 × 10^3 J
∆E = 365.72 kJ