Answer:
7.98 m
Explanation:
In the given question,
distance above surface= 2 m
Distance penny from person = 8 m
Since the swimming pool is filled with water and atmosphere has air therefore the refractive index phenomenon will occur.
The refractive index of water: air is 4/3 (1.33).
Using the formula, 4/3 = real depth, apparent depth
real depth= 4/3 x apparent depth
Now, calculating apparent depth = 8 - 2
= 6 m
therefore, real depth = 4/3 x apparent depth
= 1.33 x 6
= 7.98
thus, 7.98 m is the real depth of water.
Answer:
Average recoil force experienced by machine will be 200 N
Explanation:
We have give mass of each bullet m = 50 gram = 0.05 kg
There are 4 bullets
So mass of 4 bullets = 4×0.05 = 0.2 kg
Initial speed of the bullet u = 0 m/sec
And final speed of the bullet v = 1000 m/sec
So change in momentum 
Time is given per second so t = 1 sec
We know that force is equal to rate of change of momentum
So force will be equal to 
So average recoil force experienced by machine will be 200 N
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.
It would be oraganic matter I think.
Answer:
The speed of the ambulance is 4.30 m/s
Explanation:
Given:
Frequency of the ambulance, f = 1790 Hz
Frequency at the cyclist, f' = 1780 Hz
Speed of the cyclist, v₀ = 2.36 m/s
let the velocity of the ambulance be 'vₓ'
Now,
the Doppler effect is given as:

where, v is the speed of sound
since the ambulance is moving towards the cyclist. thus, the sign will be positive
thus,

on substituting the values, we get

or
vₓ = 4.30 m/s
Hence, <u>the speed of the ambulance is 4.30 m/s</u>