No,
To emit light an electron has to jump down to a lower energy level but in an electron is unable to go any lower in ground state.
Answer:
ℏ
Given:
Principle quantum number, n = 2
Solution:
To calculate the maximum angular momentum,
, we have:
(1)
where,
l = azimuthal quantum number or angular momentum quantum number
Also,
n = 1 + l
2 = 1 + l
l = 1
Now,
Using the value of l = 1 in eqn (1), we get:

ℏ
Answer:
Option E is correct.
Time the ball remains in the air before striking the ground is closest to 3.64 s
Explanation:
yբ = yᵢ + uᵧt + gt²/2
yբ = 0
yᵢ = 2 m
uᵧ = u sinθ = 20 sin 60 = 17.32 m/s
g = -9.8 m/s², t = ?
0 = 2 + 17.32t - 4.9t²
4.9t² - 17.32t - 2 = 0
Solving the quadratic equation,
t = 3.647 s or t = -0.1112 s
time is a positive variable, hence, t = 3.647 s. Option E.
.Answer:
491.4 nm
Explanation:
The distance between central and first maxima is,

And the distance between screen abnd grating is,

Now the angle can be find as,

Now the grating distance is,

Now with m=1 condition will become,

So,

Therefore the wavelength of laser light is 491.4 nm.