Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.
Answer:
the reflected wave is inverted and the transmitted wave is up
Explanation:
To answer this question we must analyze the physical phenomenon, with an wave reaching a discontinuity, we can analyze it as a shock.
Let's start when the discontinuity is with a fixed, very heavy and rigid obstacle, in this case the reflected wave is inverted, since the contact point cannot move
In the event that it collides with an object that can move, the reflected wave is not inverted, this is because the point can rise, they form a maximum at this point.
In the proposed case the shock is when the thickness changes, in this case we have the above phenomena, a part of the wave is reflected by being inverted and a part of the wave is transmitted without inverting.
The amplitude sum of the amplitudes of the two waves is proportional to the lanería that is distributed between them.
When checking the answers the correct one is the reflected wave is inverted and the transmitted wave is up
Impulse, denoted as J, is defined by the change in momentum. Since we have our initial and our final, we can solve for the change in momentum.
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.