Answer:
Many familiar physical quantities can be specified completely by giving a single number and the appropriate unit. For example, “a class period lasts 50 min” or “the gas tank in my car holds 65 L” or “the distance between two posts is 100 m.” A physical quantity that can be specified completely in this manner is called a scalar quantity. Scalar is a synonym of “number.” Time, mass, distance, length, volume, temperature, and energy are examples of scalar quantities.
Work done is when a force is exerted to cause a displacement in a certain object.
the equation for work done ;
work done = force applied * displacement of the object
when the force applied is not in the same direction as that of the displacement of the object then the effect of the force is not its whole value. The force is then applied at an angle to that of the displacement of the object, then the resultant force is the force exerted* cos of the angle between force and displacement, in this instance the angle is 40 °.
the new equation is then;
work done = force cos 40° * displacement
after substitution,
work = 25 N * 0.76 * 50 m
= 957.55 J
round it off
= 9.6 *10² J
the correct answer is B
The percent difference between two numbers
and
is given by

The absolute value is there because we only care about the absolute percent difference, and not taking into account whether we go from
to
or vice versa. If we remove them, we have two possible interpretations of percent difference.
For example, the (absolute) percent difference between 3 and 6 is

In other words, we add 100% of 3 to 3 to end up with 6. This is the same as the percent difference going from 3 to 6. On the other hand, the percent difference going from 6 to 3 is

which is to say, we take away 50% of 6 away from 6 to end up with 3.
"Make comparisons to object measurements" tells us that the differences should be computed relative to "measurements for object". In other words, take
from the left column and
from the right column.



Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is
