Answer:
730.4 m
Explanation:
The sound waves travels with a uniform motion (=constant velocity), therefore we can calculate the distance it travels using the formula:

where
d is the distance
v is the speed of the sound wave
t is the time taken
In this problem we have:
v = 332 m/s is the speed of sound in air
t = 2.2 s is the time elapsed
Therefore, the distance between the tower and the person is

Answer:
All points to the left of zero are negative
Explanation:
Time and space are both relative
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

I really need these points thx a lot