Answer:I am so sorry but here are no questions, thanks for the points
Explanation:Have a nice day
Answer:
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
Explanation:
Given data;
Let,
critical stress required for initiating crack propagation Cc = 112MPa
plain strain fracture toughness = 27.0MPa
surface length of the crack = a
dimensionless parameter = Y.
Half length of the internal crack, a = length of surface crack/2 = 8.8/2 = 4.4mm = 4.4*10-³m
Also for 6.2mm length of surface crack;
Half length of the internal crack = length of surface crack/2 = 6.2/2 = 3.1mm = 3.1*10-³m
The dimensionless parameter
Cc = Kic/(Y*√pia*a)
Y = Kic/(Cc*√pia*a)
Y = 27/(112*√pia*4.4*10-³)
Y = 2.05
Now,
Cc = Kic/(Y*√pia*a)
Cc = 27/(2.05*√pia*3.1*10-³)
Cc = 135.78MPa
The stress level at which fracture will occur for a critical internal crack length of 6.2mm is 135.78MPa
For more understanding, I have provided an attachment to the solution.
To solve this problem we will proceed to calculate the specific volume from the area of the cylinder and the sensitivity. Later we will calculate the volumetric coefficient of thermal expansion and finally we will be able to calculate the volume through the relation of the two terms mentioned above. Our values are



Let's start by calculating the specific volume which is given by

Here,
d = Diameter
= Sensitivity
Replacing our values we have


Now we will obtain the value of the volumetric coefficient of thermal expansion of mercury through the differential expansion coefficient of Hg whic is three times, then



Finally the relation to calculate the volume the bulb must is





Therefore the volume that the bulb must have is 
Answer:
Gs = 2.647
e = 0.7986
Explanation:
We know that moist unit weight of soil is given as

where,
= moist unit weight of the soil
Gs = specific gravity of the soil
S = degree of saturation
e = void ratio
= unit weight of water = 9.81 kN/m3
From data given we know that:
At 50% saturation,
puttng all value to get Gs value;

Gs - 1.194*e = 1.694 .........(1)
for saturaion 75%, unit weight = 17.71 KN/m3

Gs - 1.055*e = 1.805 .........(2)
solving both equations (1) and (2), we obtained;
Gs = 2.647
e = 0.7986
The ratio between a and b is 1/3