Answer:
The relationship between power, energy, and time can be described by the following equation : P = Δ E s y s Δ t. P is the average power output, measured in watts (W) ΔEsys is the net change in energy of the system in joules (J) - also known as work. Δt is the duration - how long the energy use takes - measured in seconds (s).
Explanation:
Answer:
There are six conditions
1. Poles should contain some residual flux.
2. Field and armature winding must be correctly connected so that initial mmm adds residual flux.
3. Resistance of field winding must be less than critical resistance.
4. Speed of prime mover of generator must be above critical speed.
5. Generator must be on load.
6. Brushes must have proper contact with commutators.
Explanation:
Answer:
A centrifugal clutch works, as the name suggests, through centrifugal force.
One of the most common methods is by mounting the clutch onto the parallel or taper crank shaft of the engine.
When the crank shaft rotates the shaft of the clutch rotates at the same speed as the engine
Answer:
Load carried by shaft=9.92 ft-lb
Explanation:
Given: Power P=4.4 HP
P=3281.08 W
<u><em>Power: </em></u>Rate of change of work with respect to time is called power.
We know that P=
rad/sec
So that P=
So 3281.08=
T=13.45 N-m (1 N-m=0.737 ft-lb)
So T=9.92 ft-lb.
Load carried by shaft=9.92 ft-lb
Answer:
λ^3 = 4.37
Explanation:
first let us to calculate the average density of the alloy
for simplicity of calculation assume a 100g alloy
80g --> Ag
20g --> Pd
ρ_avg= 100/(20/ρ_Pd+80/ρ_avg)
= 100*10^-3/(20/11.9*10^6+80/10.44*10^6)
= 10744.62 kg/m^3
now Ag forms FCC and Pd is the impurity in one unit cell there is 4 atoms of Ag since Pd is the impurity we can not how many atom of Pd in one unit cell let us calculate
total no of unit cell in 100g of allow = 80 g/4*107.87*1.66*10^-27
= 1.12*10^23 unit cells
mass of Pd in 1 unit cell = 20/1.12*10^23
Now,
ρ_avg= mass of unit cell/volume of unit cell
ρ_avg= (4*107.87*1.66*10^-27+20/1.12*10^23)/λ^3
λ^3 = 4.37