1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
umka21 [38]
3 years ago
11

Write a function call with arguments tensPlace, onesPlace, and userInt. Be sure to pass the first two arguments as pointers. Sam

ple output for the given program: tensPlace = 4, onesPlace = 1
Engineering
1 answer:
Trava [24]3 years ago
4 0

Answer:

#include <stdio.h>

void SplitIntoTensOnes(int* tensDigit, int* onesDigit, int DecVal){

  *tensDigit = (DecVal / 10) % 10;

  *onesDigit = DecVal % 10;

  return;

}

int main(void) {

  int tensPlace = 0;

  int onesPlace = 0;

  int userInt = 0;

  userInt = 41;

  SplitIntoTensOnes(&tensPlace, &onesPlace, userInt);

  printf("tensPlace = %d, onesPlace = %d\n", tensPlace, onesPlace);

  return 0;

}

You might be interested in
What mass of LP gas is necessary to heat 1.4 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that durin
DochEvi [55]

Answer:

m_{LP}=0.45\,kg

Explanation:

Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:

Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]

Q_{water} = 3599.435\,kJ

The heat liberated by the LP gas is:

Q_{LP} = \frac{3599.435\,kJ}{0.16}

Q_{LP} = 22496.469\,kJ

A kilogram of LP gas has a minimum combustion power of 50028\,kJ. Then, the required mass is:  

m_{LP} = \frac{22496.469\,kJ}{50028\,\frac{kJ}{kg} }

m_{LP}=0.45\,kg

6 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
Match the given traits to their definitions.
damaskus [11]

Answer:

where the question

Explanation:

8 0
3 years ago
Read 2 more answers
Air is compressed by a 40-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process a
AlexFokin [52]

Answer:

the rate of entropy change of the air is -0.1342 kW/K

the assumptions made in solving this problem

- Air is an ideal gas.

- the process is isothermal ( internally reversible process ). the change in internal energy is 0.

- It is a steady flow process

- Potential and Kinetic energy changes are negligible.

Explanation:

Given the data in the question;

From the first law of thermodynamics;

dQ = dU + dW ------ let this be equation 1

where dQ is the heat transfer, dU is internal energy and dW is the work done.

from the question, the process is isothermal ( internally reversible process )

Thus, the change in internal energy is 0

dU = 0

given that; Air is compressed by a 40-kW compressor from P1 to P2

since it is compressed, dW = -40 kW

we substitute into equation 1

dQ = 0 + ( -40 kW )

dQ = -40 kW

Now, change in entropy of air is;

ΔS_{air = dQ / T

given that T = 25 °C = ( 25 + 273.15 ) K = 298.15 K

so we substitute

ΔS_{air =  -40 kW / 298.15 K

ΔS_{air =  -0.13416 ≈ -0.1342 kW/K

Therefore, the rate of entropy change of the air is -0.1342 kW/K

the assumptions made in solving this problem

- Air is an ideal gas.

- the process is isothermal ( internally reversible process ). the change in internal energy is 0.

- It is a steady flow process

- Potential and Kinetic energy changes are negligible.

7 0
3 years ago
Tech A says that when cleaning brake and clutch components, the wash station should be placed directly under the component. Tech
nika2105 [10]

Both of the Technicians are correct because both advice need to be followed by the car owner.

<h3>Who are the Technicians?</h3>

The technicians are people who are expertise in automotive repair, that is, they work with mechanical systems and equipment to make sure the cars run well.

In conclusion, both of the Technicians are correct because both advice need to be followed by the car owner.

Read more about Technicians

<em>brainly.com/question/25744725</em>

4 0
3 years ago
Other questions:
  • Steam flows at steady state through a converging, insulated nozzle, 25 cm long and with an inlet diameter of 5 cm. At the nozzle
    11·1 answer
  • The critical resolved shear stress for iron is 27 MPa (4000 psi). Determine the maximum possible yield strength for a single cry
    12·1 answer
  • A Service Schedule is...
    8·2 answers
  • Impact strips may be designed into a bumper cover.<br> True<br> False
    14·1 answer
  • 2. The device that varies incoming line pressure using centrif-
    7·1 answer
  • Prefix version of 6600 volts​
    12·1 answer
  • Yes I’m very cool I promise.
    15·1 answer
  • Identify renewable energy sources you will propose. Explain the key elements to your solution and the basic technical principles
    5·1 answer
  • A 35 ft long solid steel rod is subjected to a load of 8,000 lb. This load causes the rod to stretch 0.266 in. The modulus of el
    9·1 answer
  • Out
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!