Answer:
This is an asynchrnous 3-bit counter. Just note that this design is different and works differently than its synchronous counterpart. It's an easier design than its synchronous counterpart, and is not as reliable because it has delays.
Answer:
conditional instability (Γd > Γe > Γw)
Explanation:
Given;
dry adiabatic rate, Γd = 10ºC/1000 meters
wet adiabatic rate, Γw= 6.5ºC/1000 meters
environmental lapse rate, Γe = 7.8ºC/1000 meters
Stability of the atmosphere can be described as Absolute stability, Absolute instability or conditional instability.
Conditions for Absolute stability:
Γd > Γw > Γe
Conditions for Absolute instability:
Γe > Γd > Γw
Conditions for conditional instability:
Γd > Γe > Γw
Thus, conditional instability satisfies the given values of the atmospheric condition: Γd (10) > Γe (7.8) > Γw (6.5)
Answer:
40 ft
Explanation:
Assuming no loss of energy in the system of pulleys, the work done is the same whether you move the load directly or through the pulleys.
W = Fd . . . . . . . . work is the product of force and distance
F(10 ft) = (0.25F)(d) . . . . . where d is the distance we want to find
d = 10F/(0.25F) = 40
The rope will need to move 40 feet.
a) For the thermal efficiency we have

With the previously values we know that
and
(convert the min to sec)
Replacing the values

b) We use the formula of carnot efficiency

**Note that apply the formula of carnot cycle we need to consider that there is no exchange of heat, there is no friction and the reservior are completely insulated
Answer:
Persuade the client to renovate their existing building both aesthetically and in terms of efficiency and utility of function.
Explanation:
Just would not make sense to tear the building down just to rebuild it when it can be restored.