Answer:
Using python
num_boys = int(input("Enter number of boys :"))
num_girls = int(input("Enter number of girls :"))
budget = int(input("Enter the number of dollars spent per school year :"))
try:
dollarperstudent = budget/(num_boys+num_girls)
print("Dollar spent per student : "+str(dollarperstudent))#final result
except ZeroDivisionError:
print("unavailable")
Answer:
def output_ints_less_than_or_equal_to_threshold(user_values, upper_threshold):
for value in user_values:
if value < upper_threshold:
print(value)
def get_user_values():
n = int(input())
lst = []
for i in range(n):
lst.append(int(input()))
return lst
if __name__ == '__main__':
userValues = get_user_values()
upperThreshold = int(input())
output_ints_less_than_or_equal_to_threshold(userValues, upperThreshold)
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
The nail exerts a force of 573.88 Pounds on the Hammer in positive j direction.
Explanation:
Since we know that the force is the rate at which the momentum of an object changes.
Mathematically 
The momentum of any body is defines as 
In the above problem we see that the moumentum of the hammer is reduced to zero in 0.023 seconds thus the force on the hammer is calculated using the above relations as


Answer:
elongation of the brass rod is 0.01956 mm
Explanation:
given data
length = 5 cm = 50 mm
diameter = 4.50 mm
Young's modulus = 98.0 GPa
load = 610 N
to find out
what will be the elongation of the brass rod in mm
solution
we know here change in length formula that is express as
δ =
................1
here δ is change in length and P is applied load and A id cross section area and E is Young's modulus and L is length
so all value in equation 1
δ =
δ =
δ = 0.01956 mm
so elongation of the brass rod is 0.01956 mm