<h3>
Answer:</h3>
2.125 g
<h3>
Explanation:</h3>
We have;
- Mass of NaBr sample is 11.97 g
- % composition by mass of Na in the sample is 22.34%
We are required to determine the mass of 9.51 g of a NaBr sample.
- Based on the law of of constant composition, a given sample of a compound will always contain the sample percentage composition of a given element.
In this case,
- A sample of 11.97 g of NaBr contains 22.34% of Na by mass
A sample of 9.51 g of NaBr will also contain 22.345 of Na by mass
% composition of an element by mass = (Mass of element ÷ mass of the compound) × 100
Mass of the element = (% composition of an element × mass of the compound) ÷ 100
Therefore;
Mass of sodium = (22.34% × 9.51 g) ÷ 100
= 2.125 g
Thus, the mass of sodium in 9.51 g of NaBr is 2.125 g
Answer:
See Explanation ( = same answer for earlier question)
Explanation:
The Arrhenius acid-base theory defines an acid as a compound which when added into water increases the hydronium ion (H₃O⁺) concentration and the base as a compound which when added into water increases the hydroxide (OH⁻) ion concentration. As such, an acid-base reaction is limited to proton transfer to only OH⁻ ions forming water. Such would imply that all acid-base reactions produce water only in addition to a salt. This is not always the case as conjugate base anions for many substances can receive proton transfer.
Example: The reaction HOAc + NaCN => HCN + OAc- will occur in aqueous media because the proton (H⁺) on acetic acid (HOAc) will transfer to the cyanate ion forming hydrocyanic acid (HCN). Such occurs because the CN⁻ ion is a stronger conjugate base than the acetate ion (OAc⁻) and forms the more stable weak acid. Such is the basis of the Bronsted-Lowry Acid-Base system and states that an acid (proton donor) will transfer its ionizable hydrogen to a conjugate base (proton acceptor) if the transfer forms a weaker acid.
Read more on Brainly.com - brainly.com/question/15316776#readmore