Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m
You have to figure it out
<h2>Answer:</h2>
<u>Distance covered is 6.9 meters</u>
<h2>Explanation:</h2>
Data given:
Work Done = 345 kJ = 345000 J
Force = 5 x 10 ^ 4 = 50000 N
Distance = ?
Solution:
As we know that
Work Done = Force applied x Distance covered
By arranging the equation we get
Work / Force = Distance covered
By putting the values
345000 / 50000 = 6.9
So distance covered is 6.9 meters
.................yes...................
Answer:
2870 N
Explanation:
There are three forces on the mattress. Weight of the mattress, weight of the person, and buoyancy.
∑F = ma
B - mg - Mg = 0
Buoyancy is equal to the weight of the displaced fluid.
ρVg - mg - Mg = 0
ρV - m = M
Plugging in values:
M = (1000 kg/m³) (0.75 m × 2.25 m × 0.175 m) - 2 kg
M = 293 kg
The person's weight is therefore:
Mg = 293 kg × 9.8 m/s²
Mg = 2870 N