Diagram 4 is the correct answer.
a₀). You know ...
-- the object is dropped from 5 meters
above the pavement;
-- it falls for 0.83 second.
a₁). Without being told, you assume ...
-- there is no air anyplace where the marshmallow travels,
so it free-falls, with no air resistance;
-- the event is happening on Earth,
where the acceleration of gravity is 9.81 m/s² .
b). You need to find how much LESS than 5 meters
the marshmallow falls in 0.83 second.
c). You can use whatever equations you like.
I'm going to use the equation for the distance an object falls in
' T ' seconds, in a place where the acceleration of gravity is ' G '.
d). To see how this all goes together for the solution, keep reading:
The distance that an object falls in ' T ' seconds
when it's dropped from rest is
(1/2 G) x (T²) .
On Earth, ' G ' is roughly 9.81 m/s², so in 0.83 seconds,
such an object would fall
(9.81 / 2) x (0.83)² = 3.38 meters .
It dropped from 5 meters above the pavement, but it
only fell 3.38 meters before something stopped it.
So it must have hit something that was
(5.00 - 3.38) = 1.62 meters
above the pavement. That's where the head of the unsuspecting
person was as he innocently walked by and got clobbered.
Answer:
The minimum wall thickness Tmin required for the spherical tank is 65.90mm
Explanation:
Solution
Recall that,
Tmin = The minimum wall thickness =PD/2бp
where D = diameter of 8.0 m
Internal pressure = 1.62 MPa
Then
The yield strength = 295MPa/3.0 = 98.33
thus,
PD/2бp = 1.62 * 8000/ 2 *98.33
= 12960/196.66 = 65.90
Therefore the wall thickness Tmin required for the spherical tank is 65.90mm
This is true; it needs to balance it’s charge. However, it could also be negative charges as well.
Answer:
8.87 gallons of kerosene
Explanation:
Step 1: Given and required data
- Energy to travel by plane per passenger trip: 1,260 MJ/passenger trip
- Energy per gallon of kerosene: 142 MJ/gal
Step 2: Calculate how many gallons of kerosene it takes to make the trip by plane
We can calculate the amount of kerosene required by combining the factor provided in Step 1.
1 gal/142 MJ × 1,260 MJ/passenger trip = 8.87 gal/passenger trip
8.87 gallons of kerosene are required to make the trip by plane.