When the charged balloon is brought near the wall, it repels some of the negatively charged electrons in that part of the wall. Therefore, that part of the wall is left repelled.
<u>Explanation</u>:
- Balloons don't stick to walls. However, if you rub the balloon on an appropriate piece of material such as clothing or a wall, electrons are pulled from the other material to the balloon.
- The balloon now as more electrons than normal and therefore has an overall negative charge. Two balloons like this will repel each other.
- The other material now has an overall positive charge. Because opposite charges attract, the balloon will now appear to stick to the other material. If you didn't rub the balloon first, it's charge would be neutral and it wouldn't stick to the wall.
Answer:
–0.16 m
Explanation:
From the question given above, the following data were obtained:
Time (t) = 0.18 s
Acceleration due to gravity (g) = –9.81 m/s²
Height (h) =?
We can obtain how far the ruler will fall by using the following equation:
H = ½gt²
H = ½ × –9.81 × 0.18²
H = ½ × –9.81 × 0.0324
H = –0.16 m
Thus, the ruler will fall –0.16 m before you will catch it.
If an atom gains an electron and gets a negative charge because of it, it is a negatively charge ion AKA an anion.
Answer :
(a) The overall equation is:

(b) The intermediates are :

Explanation :
<u>Part (a) :</u>
(1)
(fast)
(2)
(slow)
(3)
(fast)
By adding the three equations and cancelling the common terms on both side, we will get the overall equation.

<u>Part (b) :</u>
Intermediates are generated and consumed in the mechanism and do not include in the overall equation.
Since, intermediates will not include in the overall mechanism.
The intermediates are :

Answer:
2666.7 hours
Explanation:
The key to solve this problem is that we are given the propane gas consumed in one hour by giving us the information of the volume consumed at 1 atm, 298 K (25 +273). Using the gas law we can calculate the rate of consumption of propane per hour, and from here we can calculate its mass and converting it to gallons and finally diving the 400 gallos by this number.
PV = nRT ∴ n = PV/RT
n = 1 atm x 165 L/ (0.08206 Latm/kmol x 298 K ) = 6.75 mol propane
Mass propane :
6.75 mol x 44 g/mol = 296.88 g
convert this to Kg:
296.88 g/ 1000 g/Kg = 0.30 Kg
calculate the volume in liters this represents by dividing by the density:
0.30 Kg / 0.5077 Kg/L = 0.59 L
changing this to gallons
0.59 L x 1 gallon/3.785 L = 0.15 gallon
and finally calculate how many hours the 400 gallons propane tank will deliver
400 gallon/ 0.15 gallon/hr = 2666.7 hr