Answer:
here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa
Explanation:
As wee know that the amplitude of the wave will decide the energy of the wave
Here we know that energy density of electromagnetic wave is given as

now we have

so here we can say that intensity of the wave at the given distance from the source is given by formula

so here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa.
<span>Velocities are vectors so we can add them!
Let's let +x be East and -x be West.
-0.9 + 2.7 = 1.8
Since our answer is positive that means East so the answer is C.</span>
I believe the answer is D. The milky way is a spiral galaxy, You can tell just by looking at it.
Answer:
.
Explanation:
The efficiency of a machine is the percentage of energy input that was turned into useful energy.
The power rating of this lamp is
(same as
,) meaning that
of energy is supplied to this lamp every second.
The question states that
out of that
of energy input would be turned into heat, which is not useful energy output in this scenario. Assuming that all other forms of energy loss is negligible. The rest of the
of energy supplied to this lamp would be turned into useful energy output.
Thus, every second, this lamp would receive
of energy input and would outputs
of useful work. The efficiency of this lamp would be:
.
Answer:
a. 2.668 m/s
b. 0.00494
Explanation:
The computation is shown below:
a. As we know that


As the wind does not move the skater to the east little work is performed in this direction. All the work goes in the direction of the N-S. And located in that direction the component of the Force.
F = 3.70 cos 45 = 2.62 N


We know that
KE1 = Initial kinetic energy
KE2 = kinetic energy following 100 m
The energy following 100 meters equivalent to the initial kinetic energy less the energy lost to the work performed by the wind on the skater.
So, the equation is
KE2 = KE1 - W

Now solve for v2


= 2.668 m/s
b. Now the minimum value of Ug is
As we know that
Ff = force of friction
Us = coefficient of static friction
N = Normal force = weight of skater
So,

Now solve for Us


= 0.00494