Answer: The drag force goes up by a factor of 4
Explanation:
The <u>Drag Force</u> equation is:
(1)
Where:
is the Drag Force
is the Drag coefficient, which depends on the material
is the density of the fluid where the bicycle is moving (<u>air in this case)
</u>
is the transversal area of the body or object
the bicycle's velocity
Now, if we assume
,
and
do not change, we can rewrite (1) as:
(2)
Where
groups all these coefficients.
So, if we have a new velocity
, which is the double of the former velocity:
(3)
Equation (2) is written as:
(4)
Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>
Answer:
Heat required = mass× latent heat Q = 0.15 × 871 ×
Answer:
finding Cepheid variable and measuring their periods.
Explanation:
This method is called finding Cepheid variable and measuring their periods.
Cepheid variable is actually a type of star that has a radial pulsation having a varying brightness and diameter. This change in brightness is very well defined having a period and amplitude.
A potent clear link between the luminosity and pulsation period of a Cepheid variable developed Cepheids as an important determinants of cosmic criteria for scaling galactic and extra galactic distances. Henrietta Swan Leavitt revealed this robust feature of conventional Cepheid in 1908 after observing thousands of variable stars in the Magellanic Clouds. This in fact turn, by making comparisons its established luminosity to its measured brightness, allows one to evaluate the distance to the star.
1. First blank is A. Conductors
Second blank is D. Insulators
2. C. Heat
Answer:
19.2 m/s
Explanation:
The train is moving at 18 m/s and you are walking in the same direction (east) so the speeds are added
18 + 1.2 = 19.2
If you were walking backwards (west) your velocity with respect to the ground would be
18 - 1.2 = 16.8