Answer:
E = (-3.61^i+1.02^j) N/C
magnitude E = 3.75N/C
Explanation:
In order to calculate the electric field at the point P, you use the following formula, which takes into account the components of the electric field vector:
(1)
Where the minus sign means that the electric field point to the charge.
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q = -4.28 pC = -4.28*10^-12C
r: distance to the charge from the point P
The point P is at the point (0,9.83mm)
θ: angle between the electric field vector and the x-axis
The angle is calculated as follow:

The distance r is:

You replace the values of all parameters in the equation (1):
![\vec{E}=(8.98*10^9Nm^2/C^2)\frac{4.28*10^{-12}C}{(10.21*10^{-3}m)}[-cos(15.84\°)\hat{i}+sin(15.84\°)\hat{j}]\\\\\vec{E}=(-3.61\hat{i}+1.02\hat{j})\frac{N}{C}\\\\|\vec{E}|=\sqrt{(3.61)^2+(1.02)^2}\frac{N}{C}=3.75\frac{N}{C}](https://tex.z-dn.net/?f=%5Cvec%7BE%7D%3D%288.98%2A10%5E9Nm%5E2%2FC%5E2%29%5Cfrac%7B4.28%2A10%5E%7B-12%7DC%7D%7B%2810.21%2A10%5E%7B-3%7Dm%29%7D%5B-cos%2815.84%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2815.84%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5C%5Cvec%7BE%7D%3D%28-3.61%5Chat%7Bi%7D%2B1.02%5Chat%7Bj%7D%29%5Cfrac%7BN%7D%7BC%7D%5C%5C%5C%5C%7C%5Cvec%7BE%7D%7C%3D%5Csqrt%7B%283.61%29%5E2%2B%281.02%29%5E2%7D%5Cfrac%7BN%7D%7BC%7D%3D3.75%5Cfrac%7BN%7D%7BC%7D)
The electric field is E = (-3.61^i+1.02^j) N/C with a a magnitude of 3.75N/C
Q = mcθ
Where m = mass of water in kg.
c = specific heat capacity in kJ/kg⁰C, c for water = 4200 kJ/kg⁰C
θ = temperature rise in ⁰C
Q = 100*4200* 20 Note here the temperature rise is 20 ⁰C
Q = 8 400 000 J
In calories, 4.2 J = 1 Calorie
= 8 400 000 / 4.2 = 200 000
Q = 200 000 Calories
The strong nuclear force overcomes the electric force of repulsion thatacts among the protons in thenucleus. B. The weak nuclear force is involved in certain types of radioactive processes. A.The strong nuclear force is a powerful force of attraction that acts only on theneutrons and protons in the nucleus.