Answer:
10000 V
0.00225988700565 m²

Explanation:
E = Electric field = 
d = Gap = 2.5 mm
Q = Charge = 80 nC
= Permittivity of free space = 
Potential difference is given by

The potential difference between the plates is 10000 V
Area is given by

The area of the plate is 0.00225988700565 m²
Capacitance is given by

The capacitance is 
Answer:
4500 J
Explanation:
First, let's define some equations and derivations.
Our potential energy formula is:
Where <em>m </em>is mass (in kg), <em>g</em> is the gravitational constant (in m/s²), and <em>h</em> is height (in m).
We also know that <em>mg</em> is equal to the weight of an object (in N), from Newton's 2nd Law of Motion: F = ma (Force is equal to [constant] mass times acceleration).
Therefore, we can simply substitute force into the equation:
Where <em>F</em> is the force (in N) and <em>h</em> is still height (in m).
Now we can calculate the amount of potential energy in our system, measured in joules.
Substitute in the given variables, F = 500 N and h = 9 m:
Using simple Pre-Algebra rules, we find that:
This tells us that the we have 4500 joules of potential energy when I am 9 meters above the water on the edge of the diving board.
Answer:
20.0 cm
Explanation:
Here is the complete question
The normal power for distant vision is 50.0 D. A young woman with normal distant vision has a 10.0% ability to accommodate (that is, increase) the power of her eyes. What is the closest object she can see clearly?
Solution
Now, the power of a lens, P = 1/f = 1/u + 1/v where f = focal length of lens, u = object distance from eye lens and v = image distance from eye lens.
Given that we require a 10 % increase in the power of the lens to accommodate the image she sees clearly, the new power P' = 50.0 D + 10/100 × 50 = 50.0 D + 5 D = 55.0 D.
Also, since the object is seen clearly, the distance from the eye lens to the retina equals the distance between the image and the eye lens. So, v = 2.00 cm = 0.02 m
Now, P' = 1/u + 1/v
1/u = P'- 1/v
1/u = 55.0 D - 1/0.02 m
1/u = 55.0 m⁻¹ - 1/0.02 m
1/u = 55.0 m⁻¹ - 50.0 m⁻¹
1/u = 5.0 m⁻¹
u = 1/5.0 m⁻¹
u = 0.2 m
u = 20 cm
So, at 55.0 dioptres, the closet object she can see is 20 cm from her eye.
Answer:
A ball being dropped to the ground
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph