1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Over [174]
3 years ago
7

I WILL GIVE YOU BRAINLIEST!!

Physics
1 answer:
Amiraneli [1.4K]3 years ago
4 0

Answer:

Resistance, resistivity and drift velocity varies with relaxation time which is dependent on temperature.

Number of free electrons in a conductor remains invariant even if its temperature changes.Hence correct option is option D.

You might be interested in
uniform disk with mass 40.0 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is station
Alex787 [66]

Answer:

The magnitude of the tangential velocity is v= 0.868 m/s

The magnitude of the resultant acceleration at that point is  a = 4.057 m/s^2

Explanation:

From the question we are told that

      The mass of the uniform disk is m_d = 40.0kg

       The radius of the uniform disk is R_d = 0.200m

       The force applied on the disk is F_d = 30.0N

Generally the angular speed i mathematically represented as

             w = \sqrt{2 \alpha  \theta}

Where \theta is the angular displacement given from the question as

           \theta  = 0.2000 rev = 0.2000 rev * \frac{2 \pi \ rad }{1 rev}

                 =1.257\  rad

   \alpha is the angular acceleration which is mathematically represented as

                    \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

    The moment of inertial is mathematically represented as

                     I = \frac{1}{2} m_dR^2_d

Substituting values

                    I = 0.5 * 40 * 0.200^2

                        = 0.8kg \cdot m^2

Considering the equation for angular acceleration

               \alpha = \frac{torque }{moment \ of  \ inertia}  = \frac{F_d * R_d}{I}

Substituting values

               \alph\alpha = \frac{(30.0)(0.200)}{0.8}

                   = 7.5 rad/s^2

Considering the equation for angular velocity

    w = \sqrt{2 \alpha  \theta}

Substituting values

     w =\sqrt{2 * (7.5) * 1.257}

         = 4.34 \ rad/s

The tangential velocity of a given point on the rim is mathematically represented as

                 v = R_d w

Substituting values

                    = (0.200)(4.34)

                     v= 0.868 m/s

The radial acceleration at hat point  is mathematically represented as

            \alpha_r = \frac{v^2}{R}

                  = \frac{0.868^2}{0.200^2}

                 = 3.7699 \ m/s^2

The tangential acceleration at that point is mathematically represented as

               \alpha _t = R \alpha

Substituting values

           \alpha _t = (0.200) (7.5)

                 = 1.5 m/s^2

The magnitude of resultant acceleration at that point is

                 a = \sqrt{\alpha_r ^2+ \alpha_t^2 }

Substituting values

                a = \sqrt{(3.7699)^2 + (1.5)^2}

                   a = 4.057 m/s^2

         

7 0
3 years ago
A train whose proper length is 1200 m passes at a high speed through a station whose platform measures 900 m, and the station ma
TiliK225 [7]

Answer:

0.66c

Explanation:

Use length contraction equation:

L = L₀ √(1 − (v²/c²))

where L is the contracted length,

L₀ is the length at 0 velocity,

v is the velocity,

and c is the speed of light.

900 = 1200 √(1 − (v²/c²))

3/4 = √(1 − (v²/c²))

9/16 = 1 − (v²/c²)

v²/c² = 7/16

v = ¼√7 c

v ≈ 0.66 c

6 0
3 years ago
Which of the following statements are true about the international system of measurement?
anygoal [31]
The International System Units or the SI units is  scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived. This system was formerly called the meter-kilogram-second (MKS) system.
8 0
3 years ago
A heat engine with 0.300 mol of a monatomic ideal gas initially fills a 1000 cm3 cylinder at 500 K . The gas goes through the fo
LuckyWell [14K]

Complete Question:

A heat engine with 0.300 mol of a monatomic ideal gas initially fills a 1000 cm3 cylinder at 500 K . The gas goes through the following closed cycle: - Isothermal expansion to 5000 cm3. - Isochoric cooling to 400 K . - Isothermal compression to 1000 cm3. - Isochoric heating to 500 K .

a) what is the work for one cycle

b) what is the thermal efficiency

Answer:

a) Work done for 1 cycle = 402.13

b) Thermal efficiency = 20%

Explanation:

Number of moles, n = 0.300 mol

Initial Volume, V₁ = 1000 cm³

Temperature, T = 500 K

Isothermal expansion to 5000 cm³

Final volume, V₂ = 5000 cm³

R = 8.314 J/ mol.K

Work done, W = nRT ln(V₂/V₁)

W = (0.3 * 8.314 * 500) * ln(5000/1000)

W = 1247.1 * ln5

W₁ = 2007.13 J

Isochoric cooling

In an Isochoric process, volume is constant i.e. V₂ = V₁ = V

W = nRT ln(V/V)

But  ln(V/V) = ln 1 = 0

Work done, W₂ = 0 Joules

Isothermal Compression to 1000 cm³

V₂ = 1000 cm³

V₁ = 5000 cm³

W = nRT ln(V₂/V₁)

W = 0.3 * 8.314 * 400 ln(1000/5000)

W₃ = -1605 J

Isochoric heating to 500 K

Since there is no change in volume, no work is done

W₄ = 0 J

a) Work done for 1 cycle

W = W₁ + W₂ + W₃ + W₄

W = 2007.13 + 0 + 0 -1605+0

W = 402.13 Joules

b) Thermal efficiency

Thermal efficiency = (Net workdone for 1 cycle)/(Heat absorbed)

Heat absorbed = Work done due to thermal expansion = 2007.13 J

Thermal efficiency = 402.13/2007.13

Thermal efficiency = 0.2

Thermal efficiency = 0.2 * 100% = 20 %

3 0
3 years ago
Free Fall: A rock is thrown directly upward from the edge of a flat roof of a building that is 56.3 meters tall. The rock misses
Slav-nsk [51]

Answer:

v₀₁= 5.525 m / s

Explanation

Freefall Formulas :

The sign of acceleration due to gravity  (g) is positive if the object is going down and negative if the object is going up.

vf= v₀+gt  

vf²=v₀²+2*g*h

h= v₀t+ (1/2)*g*t²

Where:  

h: hight in meters (m)    

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

g: acceleration due to gravity in m/s²

Kinematics of the rock from the starting point with vo until it reaches its maximum height:

vf₁= v₀₁-gt₁  :vf₁ =0 to maximum height

0= v₀₁-gt₁

v₀₁ = g*t₁

t₁ =v₀₁ / g      Equation (1)

vf₁²= v₀₁²-2*g*h₁   : vf₁ =0 to maximum height

0 = v₀₁²-2*g*h₁

2*g*h₁ = v₀₁²

h₁ = (v₀₁²)/(2g)   Equation (2)

Kinematics of the rock when it falls from the maximum height until it touches the floor

h₂= v₀₂t+ (1/2)*g*t₂²  v₀₂=vf₁ =0

h₂= 0+ (1/2)*g*t₂²

h₂= (1/2)*g*t₂²   Equation (3)

Equation that relates h₁ to h₂

h₂=  h₁ + 56.3  ,  h₁ = (v₀₁²)/(2g)

h₂= (v₀₁²)/(2g) + 56.3  Equation (4)

Equation that relates t₁ to t₂

t₁ + t₂ =4 s

t₂ =4 -t₁

t₂ =4 -(v₀₁/g )

Calculation of v₀₁

We replace equation 4 and equation 5 in equation 3

(v₀₁²)/(2g) + 56.3 = (1/2)*g*(4 -(v₀₁/g ) )²

(v₀₁²)/(2g) + 56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g )+((v₀₁/g )²)

we eliminate (v₀₁²)/(2g) on both sides of the equation

56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g ))

56.3 = 78.4 - 4*v₀₁

4*v₀₁ =78.4-56.3

v₀₁= (78.4-56.3) / ( 4)

v₀₁= 5.525 m / s

7 0
3 years ago
Other questions:
  • Explain what happens to the atoms in the reactants during a chemical reaction
    5·1 answer
  • What is the main difference between the Schrödinger model and the Bohr atomic model?
    8·1 answer
  • A. How long does it take light to travel through a 3.0-mm-thick piece of window glass?
    15·1 answer
  • A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/
    13·1 answer
  • What does a virus look like
    11·2 answers
  • Which statement describes a resistor in a circuit?
    15·2 answers
  • Cumulonimbus clouds are associated with what type of weather?<br> 1.Stormy<br> 2. Fair<br> 3. Windy
    5·2 answers
  • Taylor Swift weighing 794 N gets on an elevator. The elevator uses 313 W of power to lift the person 22.0 m. How much time did t
    5·1 answer
  • When measuring the potential difference across a component, you need
    14·2 answers
  • Una onda sonora se produce durante 1,5 s. Posee una longitud de onda de 2,4 m y una velocidad de 340 m/s.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!