Answer:
Assuming air resistance is negligible, all of the potential energy that the object has at the top of the ramp is converted into kinetic energy by the time it gets to the bottom of the ramp. This is because no matter what path the object takes to move the 5m vertically (ie. falling straight down v. sliding on the ramp), gravity does the same amount of work on it.
Thus, calculate the total amount of potential energy at the top of the ramp:
Ep=mgh
Ep=4(9.81)5
Ep=196.2 Joules
Because all of this potential energy is converted into kinetic energy in the object by the bottom of the ramp, the object hits the spring with 196.2J of energy.
By using the formula for elastic potential energy, you can calculate exactly how far the spring compresses.
196.2=(1/2)k(x^2)
392.4=(350)(x^2)
1.1211=x^2
sqrt(1.1211)=x
x=1.059m
As for the last part of the question, after the object compresses the spring fully and stops momentarily, the spring converts it's elastic potential energy back into kinetic energy in the object and pushes it away again.
Explanation:
Answer:
8N
Explanation:
the body is subjected to pressure equals to force force inverse to the area of that body given that it is in motion
Answer:
A horse pulls a wagon along a road
Long time ago, people saw the constellations as patterns in the sky. They names these patterns and tell stories about them. What people saw laong time ago are just mere patterns which forms animals and shapes. We got the names of our constellations from the Greeks who named the constellations after the mythological heroes and mythological legends.
Answer:
They are both placed at high vantage points for an optimal experience.
Explanation:
Gravity works in your favor when participating in bungee jumping as well as ziplining