Explanation:
Given
initial velocity(v_0)=1.72 m/s

using 
Where v=final velocity (Here v=0)
u=initial velocity(1.72 m/s)
a=acceleration 
s=distance traveled

s=0.214 m
(b)time taken to travel 0.214 m
v=u+at


t=0.249 s
(c)Speed of the block at bottom

Here u=0 as it started coming downward

v=1.72 m/s
Missing part in the text: "...the charges are <span>separated by a distance of 30.0 cm."
</span>
Solution:
The point midway between the two charges is located 15.0 cm from one charge and 15.0 from the other charge. The electric field generated by each of the charges is

where
ke is the Coulomb's constant
Q is the value of the charge
r is the distance of the point at which we calculate the field from the charge (so, in this problem, r=15.0 cm=0.15 m).
Let's calculate the electric field generated by the first charge:

While the electric field generated by the second charge is

Both charges are positive, this means that both electric fields are directed toward the charge. Therefore, at the point midway between the two charges the two electric fields have opposite direction, so the total electric field at that point is given by the difference between the two fields:
Answer:
The expression for the time taken by an object to move with a speed at some distance is,
t=<u> </u><u>d</u><u>/</u><u>v</u>
Here, t is the time taken by the opponent to react, d is the length of the court, andis the speed of the ball.
Explanation:
hope u like it :)
Stars are not spread uniformly across the universe but are normally grouped into galaxies along with interstellar gas and dust. A typical galaxy contains hundreds of billions of stars and there are more than 2 trillion galaxies