I think it's longitudinal wave because the particles move parallel to the direction that the wave is traveling.
Answer:
Explanation:
Velocity of sound in air at 20 degree = 343 m/s
Velocity of sound in water at 20 degree = 1470 m/s
Time taken in to and fro movement in air
=( 2 x 10) / 343 = 0.0583 s
Rest of the time is
.171 - .0583 = .1127 s
This time is taken to cover distance in water. If d be the depth of lake
2d / velocity = time taken
2 d / 1470 = .1127
d = 82.83 m
The distance mirror M2 must be moved so that one wavelength has produced one more new maxima than the other wavelength is;
<u><em>L = 57.88 mm</em></u>
<u><em /></u>
We are given;
Wavelength 1; λ₁ = 589 nm = 589 × 10⁻⁹ m
Wavelength 2; λ₂ = 589.6 nm = 589.6 × 10⁻⁹ m
We are told that L₁ = L₂. Thus, we will adopt L.
Formula for the number of bright fringe shift is;
m = 2L/λ
Thus;
For Wavelength 1;
m₁ = 2L/(589 × 10⁻⁹)
For wavelength 2;
m₂ = 2L/(589.6)
Now, we are told that one wavelength must have produced one more new maxima than the other wavelength. Thus;
m₁ - m₂ = 2
Plugging in the values of m₁ and m₂ gives;
(2L/589) - (2L/589.6) = 2
divide through by 2 to get;
L[(1/589) - (1/589.6)] = 1
L(1.728 × 10⁻⁶) = 1
L = 1/(1.728 × 10⁻⁶)
L = 578790.67 nm
L = 57.88 mm
Read more at; brainly.com/question/17161594
I cant see the paragraph so i cant see. It srry
When the activation energy of an exothermic reaction decreases at a given temperature, the reaction rate increases because the <span>number of successful effective collisions is higher. More of the reactants collide and are able to form products. Hope this answers the question. have a nice day.</span>