Answer:
a.
b.
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.
At time t = 3 seconds,
<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.
For the time interval of 2 seconds,
The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,
It is the displacement of the particle in 2 seconds.
Answer:
Shiloh dynasty, jucie wrld or xxx or twenty one plot
Explanatio
Answer:
uh finish the question please lol.
Answer:
2C
Explanation:
The equivalent capacitance of a parallel combination of capacitors is the sum of their capacitance.
So, if the capacitance of each capacitor is half the previous one, we have a geometric series with first term = C and rate = 0.5.
Using the formula for the sum of the infinite terms of a geometric series, we have:
Sum = First term / (1 - rate)
Sum = C / (1 - 0.5)
Sum = C / 0.5 = 2C
So the equivalent capacitance of this parallel connection is 2C.
The coefficient of static friction is 0.222
Explanation:
In order for the car to remain in circular motion, the frictional force must be able to provide the necessary centripetal force. Therefore, the car will start skidding when the two forces are equal:
where the term on the left is the frictional force, while the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the car
g is the acceleration of gravity
v is the speed of the car
r is the radius of the track
In this problem, we have:
r = 564 m
v = 35 m/s
And re-arranging the equation for , we can find the coefficient of static friction:
Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly