1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nadezda [96]
3 years ago
15

¿Qué distancia recorre un móvil que lleva una aceleración de 5m/s durante 10seg?

Physics
1 answer:
coldgirl [10]3 years ago
3 0

Answer:

250 m

Explanation:

The car in this problem is moving of uniform accelerated motion, so we can use the following suvat equation:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

Assuming the car starts from rest,

u = 0

Also we know that

a = 5 m/s^2 (acceleration of the car)

t = 10 s

Substituting, we find the distance covered:

s=0+\frac{1}{2}(5)(10)^2=250 m

You might be interested in
The process by which metamorphic rock changes to igneous rock begins with?
Strike441 [17]
Melting, as igneous rock is magma or lava that has cooled and hardened.
5 0
3 years ago
A rocket travels in the x-direction at speed 0.70c with respect to the earth. An experimenter on the rocket observes a collision
marishachu [46]

Answer:

A) The space time coordinate x of the collision in Earth's reference frame is

x \approx 103,46x10^{9}m.

B) The space time coordinate t of the collision in Earth's reference frame is

t=377,29s

Explanation:

We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).

An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.

<em>Lorentz transformation</em>

The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.

The Lorentz transformation is

                          x'=\frac{x-vt}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                                y'=y

                                z'=z

                          t'=\frac{t-\frac{v}{c^{2}}x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations

                       x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                           y=y'

                           z=z'

                        t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

First we calculate the expression in the denominator

                            \frac{v^{2}}{c^{2}}=\frac{(0,70)^{2}c^{2}}{c^{2}} =(0,70)^{2}

                                \sqrt{1-\frac{v^{2}}{c^{2}}} =0,714

then we calculate t

                      t=\frac{t'+\frac{v}{c^{2}}x'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                      t=\frac{190s+\frac{0,70c}{c^{2}}.3,4x10^{10}m}{0,714}

                      t=\frac{190s+\frac{0,70c .3,4x10^{10}m}{299792458\frac{m}{s}}}{0,714}

                      t=\frac{190s+79,388s}{0,714}

finally we get that

                                     t=377,29s

then we calculate x

                         x=\frac{x'+vt'}{\sqrt{1-\frac{v^{2}}{c^{2}}}}

                         x=\frac{3,4x10^{10}m+0,70c.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+0,70.299792458\frac{m}{s}.190s}{0,714}}

                         x=\frac{3,4x10^{10}m+39872396914m}{0,714}}

                         x=\frac{73872396914m}{0,714}}

                         x=103462740775,91m

finally we get that

                                     x \approx 103,46x10^{9} m

5 0
3 years ago
Un atleta de 70 kg de masa que ha efectuado un salto de altura cae una vez que ha
Allushta [10]

Answer:

a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards

Explanation:

The forces on the athlete are

a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,

therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards

b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles

c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.

3 0
2 years ago
A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.
arlik [135]

Answer:

part (a) v = 1.7 m/s towards right direction

part (b) Not an elastic collision

part (c) F = -228.6 N towards left.

Explanation:

Given,

  • Mass of the first puck = m_1\ =\ 5\ kg
  • Mass of the second puck = m_2\ =\ 3\ kg
  • initial velocity of the first puck = u_1\ =\ 3\ m/s.
  • Initial velocity of the second puck = u_2\ =\ -1.5\ m/s.

Part (a)

Pucks are stick together after the collision, therefore the final velocities of the pucks are same as v.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ =\ (m_1\ +\ m_2)v\\\Rightarrow v\ =\ \dfrac{m_1u_1\ +\ m_2u_2}{m_1\ +\ m_2}\\\Rightarrow v\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5}{5\ +\ 1.5}\\\Rightarrow v\ =\ 1.7\ m/s.

Direction of the velocity is towards right due to positive velocity.

part (b)

Given,

Final velocity of the second puck = v_2\ =\ 2.31\ m/s.

Let v_1 be the final velocity of first puck after the collision.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ +\ m_1v_1\ +\ m_2v_2\\\Rightarrow v_1\ =\ \dfrac{m_1u_1\ +\ m_2u_2\ -\ m_2v_2}{m_1}\\\Rightarrow v_1\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5\ -\ 1.5\times 2.31}{5}\\\Rightarrow v_1\ =\ 1.857\ m/s.

For elastic collision, the coefficient of restitution should be 1.

From the equation of the restitution,

v_1\ -\ v_2\ =\ e(u_2\ -\ u_1)\\\Rightarrow e\ =\ \dfrac{v_1\ -\ v_2}{u_2\ -\ u_1}\\\Rightarrow e\ =\ \dfrac{1.857\ -\ 2.31}{-1.5\ -\ 3}\\\Rightarrow e\ =\ 0.1\\

Therefore the collision is not elastic collision.

part (c)

Given,

Time of impact = t = 25\times 10^{-3}\ sec

we know that the impulse on an object due to a force is equal to the change in momentum of the object due to the collision,

\therefore I\ =\ \ m_1v_1\ -\ m_1u_1\\\Rightarrow F\times t\ =\ m_1(v_1\ -\ u_1)\\\Rightarrow F\ =\ \dfrac{m_1(v_1\ -\ u_1)}{t}\\\Rightarrow F\ =\ \dfrac{5\times (1.857\ -\ 3)}{25\times 10^{-3}}\\\Rightarrow F\ =\ -228.6\ N

Negative sign indicates that the force is towards in the left side of the movement of the first puck.

3 0
3 years ago
A boulder with a mass of 50 kg, sits on a cliff that is 50 m high. The boulder is pushed off of the cliff. How much kinetic ener
rosijanka [135]
50 +50 =100 Since it’s sitting on a 50m cliff that’s high with a mass of 50 kg it would be adding because once it goes down it’s adding speed
8 0
3 years ago
Other questions:
  • How did ALS impact Stephen Hawking?
    5·1 answer
  • If you know a car is traveling 300 km in 3 hours, you can find its
    11·1 answer
  • If you whirl a tin can on the end of a string and the string suddenly breaks, in what direction will the can go?
    7·1 answer
  • What is the speed of a bobsled whose distance-time graph indicates that it traveled 117m in 25s
    13·1 answer
  • A young man exerted a force of 9000N on a stalled car but was unable to move it. How much work was done?
    5·1 answer
  • What if energy, like electricity, could not be converted to other forms like sound, heat, motion, or light?
    12·1 answer
  • Who was the first to state the concept of an atom?
    9·2 answers
  • Match the term with its description.
    10·1 answer
  • Identify the type of weathering seen in each picture
    15·2 answers
  • If the magnitude of the electric field in air exceeds roughly 3 ✕ 106 N/C, the air breaks down and a spark forms. For a two-disk
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!