Answer:
1.53seconds
Explanation:
Using first equation of motion :
V=U + at
Where final velocity (V) =+8.3m/s
Initial velocity (U) =+4.4m/s
Acceleration (a) = 0.65m/s^2
time(s)=?
V=U + at
+8.3^2 = +4.4 + 0.65 * t
Making t the subject of the formula :
Therefore, t= ( +8.3 - 4.4)/0.65 = 1.53seconds
The question is incomplete. The complete question is :
Two loudspeakers are placed 1.8 m apart. They play tones of equal frequency. If you stand 3.0 m in front of the speakers, and exactly between them, you hear a minimum of intensity. As you walk parallel to the plane of the speakers, staying 3.0 m away, the sound intensity increases until reaching a maximum when you are directly in front of one of the speakers. The speed of sound in the room is 340 m/s.
What is the frequency of the sound?
Solution :
Given :
The distance between the two loud speakers, 
The speaker are in phase and so the path difference is zero constructive interference occurs.
At the point
, the speakers are out of phase and so the path difference is 
Therefore,




Thus the frequency is :


Hz
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10