1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
13

Calculate the molality of a solution that is prepared by mixing 25.5 ml of ch3oh (d = 0.792 g/ml and 387 ml of ch3ch2ch2oh (d =

0.811 g/ml.
Chemistry
2 answers:
Zanzabum3 years ago
8 0
The solvent is <span>ch3ch2ch2oh with a volume of 387 mL which is equivalent to
387 mL (0.811 g/mL) (1 kg /1000 kg) = 0.3139 kg
The moles of the alchol is
25.5 mL (0.792 g/mL) (1 mol/32 g) = 0.631 mol
The molality is
0.631 mol / 0.3139 kg = 2.01 mol/kg</span>
scoundrel [369]3 years ago
3 0

The molality of solution prepared by mixing 25.5 mL of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}} and 387 mL of {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}} is \boxed{2.01{\text{ m}}}.

Further Explanation:

Different concentration terms are utilized in determining the concentration of various solutions. Some of the most commonly used terms are written below.

1. Molarity (M)

2. Mole fraction (X)

3. Molality (m)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molality is one of the concentration terms used very often in solutions. It is defined as moles of solute divided by the mass of solvent in kilograms. The formula to calculate molality of solution is as follows:

{\text{Molality of solution}} = \dfrac{{{\text{Moles }}\left( {{\text{mol}}} \right){\text{of solute}}}}{{{\text{Mass }}\left( {{\text{kg}}} \right){\text{ of solvent}}}}                                     …… (1)

The formula to calculate the density of component is as follows:

{\text{Density of component}} = \dfrac{{{\text{Mass of component}}}}{{{\text{Volume of component}}}}                                   …… (2)

Rearrange equation (2) to calculate mass of component.

{\text{Mass of component}} = \left( {{\text{Density of component}}} \right)\left( {{\text{Volume of component}}} \right)            …… (3)

Substitute 25.5 mL for volume of component and 0.792 g/mL for density of component in equation (3) to calculate mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}.

\begin{aligned}  {\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}} &= \left( {{\text{0}}{\text{.792 g/mL}}} \right)\left( {{\text{25}}{\text{.5 mL}}} \right) \\   & = 20.196{\text{ g}} \\ \end{aligned}  

Substitute 387 mL for volume of component and 0.811 g/mL for density of component in equation (3) to calculate mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}}.

\begin{aligned}  {\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}} &= \left( {{\text{0}}{\text{.811 g/mL}}} \right)\left( {{\text{387 mL}}} \right)\left( {\frac{{{{10}^{ - 3}}{\text{ kg}}}}{{1{\text{ g}}}}} \right) \\   & = 0.3139{\text{ kg}} \\ \end{aligned}  

The formula to calculate moles of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}} is as follows:

{\text{Moles of C}}{{\text{H}}_{\text{3}}}{\text{OH}} = \dfrac{{{\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}}}}{{{\text{Molar mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}}}}                                                …… (4)

Substitute 20.196 g for mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}  and 32.04 g/mol for molar mass of   in equation (4).

\begin{aligned}  {\text{Moles of C}}{{\text{H}}_{\text{3}}}{\text{OH}} &= \frac{{{\text{20}}{\text{.196 g}}}}{{{\text{32}}{\text{.04 g/mol}}}} \\    &= 0.6303{\text{ mol}} \\ \end{aligned}  

Substitute 0.6303 mol for moles of solute and 0.3139 kg for mass of solvent in equation (1) to calculate molality of given solution.

\begin{aligned}  {\text{Molality of given solution}} &= \frac{{{\text{0}}{\text{.6303 mol}}}}{{{\text{0}}{\text{.3139 kg}}}} \\    &= 2.007{\text{ m}} \\   & \approx {\text{2}}{\text{.01 m}} \\ \end{aligned}  

Learn more:

  1. Calculation of volume of gas: brainly.com/question/3636135
  2. Determine how many moles of water produce: brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: concentration, concentration terms, 2.01 m, molality, moles, mass, 0.3139 kg, CH3OH, CH3CH2CH2OH, 0.6303 mol.

You might be interested in
The progress of the reaction:
Blababa [14]

Answer:

The Equilibrium constant K is far greater than 1; K>>1

Explanation:

The equilibrium constant, K, for any given reaction at equilibrium, is defined as the ratio of the concentration of the products raised to their stoichiometric coefficients divided by the concentration of reactants raised to their stoichiometric coefficients.

It tells us more about how how bigger or smaller the concentration of products is to that of the reactants when a reaction attains equilibrium. From the given data, as the color of the reactant mixture (Br2 is reddish-brown, and H2 is colourless) fades, more of the colorless product (HBr is colorless) is being formed as the reaction approaches equilibrium. This indicates yhat the concentration of products becomes relatively higher than that of the reactants as the reaction progresses towards equilibrium, the equilibrium constant K, must be greater than 1 therefore.

6 0
3 years ago
An element with an electronegativity of 0.9 bonds with an element with an electronegativity of 3.1.. Which phase best describes
eduard
Electronegativity is the strength an atom has to attract a bonding pair of electrons to itself. When a chlorine atom covalently bonds to another chlorine atom, the shared electron pair is shared equally. The electron density that comprises the covalent bond is located halfway between the two atoms.

But what happens when the two atoms involved in a bond aren’t the same? The two positively charged nuclei have different attractive forces; they “pull” on the electron pair to different degrees. The end result is that the electron pair is shifted toward one atom.

ATTRACTING ELECTRONS: ELECTRONEGATIVITIES

The larger the value of the electronegativity, the greater the atom’s strength to attract a bonding pair of electrons. The following figure shows the electronegativity values of the various elements below each element symbol on the periodic table. With a few exceptions, the electronegativities increase, from left to right, in a period, and decrease, from top to bottom, in a family.

Electronegativities give information about what will happen to the bonding pair of electrons when two atoms bond. A bond in which the electron pair is equally shared is called a nonpolar covalent bond. You have a nonpolar covalent bond anytime the two atoms involved in the bond are the same or anytime the difference in the electronegativities of the atoms involved in the bond is very small.



Now consider hydrogen chloride (HCl). Hydrogen has an electronegativity of 2.1, and chlorine has an electronegativity of 3.0. The electron pair that is bonding HCl together shifts toward the chlorine atom because it has a larger electronegativity value.

A bond in which the electron pair is shifted toward one atom is called a polar covalent bond. The atom that more strongly attracts the bonding electron pair is slightly more negative, while the other atom is slightly more positive. The larger the difference in the electronegativities, the more negative and positive the atoms become.

Now look at a case in which the two atoms have extremely different electronegativities — sodium chloride (NaCl). Sodium chloride is ionically bonded. An electron has transferred from sodium to chlorine. Sodium has an electronegativity of 1.0, and chlorine has an electronegativity of 3.0.

That’s an electronegativity difference of 2.0 (3.0 – 1.0), making the bond between the two atoms very, very polar. In fact, the electronegativity difference provides another way of predicting the kind of bond that will form between two elements, as indicated in the following table.

Electronegativity DifferenceType of Bond Formed0.0 to 0.2nonpolar covalent0.3 to 1.4polar covalent> 1.5ionic

The presence of a polar covalent bond in a molecule can
Divide
3 0
3 years ago
Which of the following pairs of elements could possibly be in the same group? X has a 1+ ion; Y has a 1- ion. X tends to form a
exis [7]
Let's eliminate these one by one.
The first pair would not be the same, as X would most likely be in group IA, and Y would be in group VIIA, because of their tendency to gain and lose electrons.
The second pair would also violate the same rule, but X would most likely be in group IIA, and Y would most likely be in group VIA.
The third pair would not be the same, as X is most likely in group VIIA, and since Y has eight valence electrons, it is most likely a noble gas.
The final pair has X with atomic number 15, making it phosphorous. Phosphorous wants to gain 3 electrons to have a full octet of 8 outer "valence" electrons, and Y would also like to gain 3 electrons. This means it is possible that the final pair would be in the same group.
5 0
4 years ago
Read 2 more answers
Use the periodic table to write the electron configuration for rubidium (Rb) in noble has notation
Alexxx [7]

Answer:

Rb: [Kr] 5s  

Step-by-step explanation:

Rb is element 37, the first element in Period 5.

It has one valence electron, so its valence electron configuration is 5s.

The noble gas configuration uses the symbol of the previous noble gas as a shortcut for the electron configurations of the inner electrons.

The preceding noble gas is Kr, so the electron configuration is Rb: [Kr] 5s.

4 0
3 years ago
Why is haemoglobin a pure substance
dem82 [27]
<span>Haemoglobin is a pure substance because it contains only one type of atom. </span>
6 0
3 years ago
Other questions:
  • Which statement correctly compares an atom of an alkali metal with an atom of the alkaline earth metal next to it on the periodi
    12·2 answers
  • A person's heartbeat is 89 beats per minute. If his/her heart beats 3.1e9 times in a lifetime, how long (in whole years) does th
    8·1 answer
  • Which answer provides the correct name for the following hydrocarbon?
    13·2 answers
  • Why are both accuracy and precision important in making a measurement
    11·1 answer
  • For elements in the third row of the periodic table and beyond, the octet rule is often not obeyed. a friend of yours says this
    12·1 answer
  • Antimony has 2 naturally occurring isotopes. The mass of antimony-121 is 120.904 amu and the mass of antimony-123 is 122.904 amu
    11·1 answer
  • Why isn't hydrogen considered an alkali metal ?
    7·2 answers
  • When nitrogen and magnesium form an ionic bond, what is the formula?
    14·1 answer
  • Which layers of the earths are common to both the compostitional and mechanical descriptions
    8·1 answer
  • The half-life of radon-222 is 3.8 days. If a sample currently contains 3.1 grams of radon-222, how much radon-222 did this sampl
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!