1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andre45 [30]
3 years ago
13

Calculate the molality of a solution that is prepared by mixing 25.5 ml of ch3oh (d = 0.792 g/ml and 387 ml of ch3ch2ch2oh (d =

0.811 g/ml.
Chemistry
2 answers:
Zanzabum3 years ago
8 0
The solvent is <span>ch3ch2ch2oh with a volume of 387 mL which is equivalent to
387 mL (0.811 g/mL) (1 kg /1000 kg) = 0.3139 kg
The moles of the alchol is
25.5 mL (0.792 g/mL) (1 mol/32 g) = 0.631 mol
The molality is
0.631 mol / 0.3139 kg = 2.01 mol/kg</span>
scoundrel [369]3 years ago
3 0

The molality of solution prepared by mixing 25.5 mL of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}} and 387 mL of {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}} is \boxed{2.01{\text{ m}}}.

Further Explanation:

Different concentration terms are utilized in determining the concentration of various solutions. Some of the most commonly used terms are written below.

1. Molarity (M)

2. Mole fraction (X)

3. Molality (m)

4. Parts per million (ppm)

5. Mass percent ((w/w) %)

6. Volume percent ((v/v) %)

Molality is one of the concentration terms used very often in solutions. It is defined as moles of solute divided by the mass of solvent in kilograms. The formula to calculate molality of solution is as follows:

{\text{Molality of solution}} = \dfrac{{{\text{Moles }}\left( {{\text{mol}}} \right){\text{of solute}}}}{{{\text{Mass }}\left( {{\text{kg}}} \right){\text{ of solvent}}}}                                     …… (1)

The formula to calculate the density of component is as follows:

{\text{Density of component}} = \dfrac{{{\text{Mass of component}}}}{{{\text{Volume of component}}}}                                   …… (2)

Rearrange equation (2) to calculate mass of component.

{\text{Mass of component}} = \left( {{\text{Density of component}}} \right)\left( {{\text{Volume of component}}} \right)            …… (3)

Substitute 25.5 mL for volume of component and 0.792 g/mL for density of component in equation (3) to calculate mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}.

\begin{aligned}  {\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}} &= \left( {{\text{0}}{\text{.792 g/mL}}} \right)\left( {{\text{25}}{\text{.5 mL}}} \right) \\   & = 20.196{\text{ g}} \\ \end{aligned}  

Substitute 387 mL for volume of component and 0.811 g/mL for density of component in equation (3) to calculate mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}}.

\begin{aligned}  {\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{OH}} &= \left( {{\text{0}}{\text{.811 g/mL}}} \right)\left( {{\text{387 mL}}} \right)\left( {\frac{{{{10}^{ - 3}}{\text{ kg}}}}{{1{\text{ g}}}}} \right) \\   & = 0.3139{\text{ kg}} \\ \end{aligned}  

The formula to calculate moles of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}} is as follows:

{\text{Moles of C}}{{\text{H}}_{\text{3}}}{\text{OH}} = \dfrac{{{\text{Mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}}}}{{{\text{Molar mass of C}}{{\text{H}}_{\text{3}}}{\text{OH}}}}                                                …… (4)

Substitute 20.196 g for mass of {\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}  and 32.04 g/mol for molar mass of   in equation (4).

\begin{aligned}  {\text{Moles of C}}{{\text{H}}_{\text{3}}}{\text{OH}} &= \frac{{{\text{20}}{\text{.196 g}}}}{{{\text{32}}{\text{.04 g/mol}}}} \\    &= 0.6303{\text{ mol}} \\ \end{aligned}  

Substitute 0.6303 mol for moles of solute and 0.3139 kg for mass of solvent in equation (1) to calculate molality of given solution.

\begin{aligned}  {\text{Molality of given solution}} &= \frac{{{\text{0}}{\text{.6303 mol}}}}{{{\text{0}}{\text{.3139 kg}}}} \\    &= 2.007{\text{ m}} \\   & \approx {\text{2}}{\text{.01 m}} \\ \end{aligned}  

Learn more:

  1. Calculation of volume of gas: brainly.com/question/3636135
  2. Determine how many moles of water produce: brainly.com/question/1405182

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Concentration terms

Keywords: concentration, concentration terms, 2.01 m, molality, moles, mass, 0.3139 kg, CH3OH, CH3CH2CH2OH, 0.6303 mol.

You might be interested in
Which type of bonding is most important in ch3ch2ch2ch2ch2ch3?
saveliy_v [14]

The compound CH_3CH_2CH_2CH_2CH_2CH_3 is formed only by sharing of electrons between the atoms. The structure of the compound is shown in the image.

Each line between two atoms represents the sharing of an electron pair which results in the formation of a single bond. Since, carbon has 4 electrons in its valence shell and hydrogen has 1 electron in its valence shell so in order to complete the octet ( to have 8 electrons in their valence shell, noble gas configuration) to attain stability carbon needs 4 more electrons and hydrogen needs 1 electron. So, sharing of electron will occur as shown in the image and the formed compound is stable in nature.

Since, the bond that is formed by sharing of electrons between atoms is known as covalent bond. So, covalent bonding is most important in CH_3CH_2CH_2CH_2CH_2CH_3.

7 0
4 years ago
A car averages 27.5 miles per gallon
FrozenT [24]
How much is each gallon or how far are you going is the question you should be asking
6 0
4 years ago
Two hydraulic cylinders are connected. If the diameter of one piston is twice the other, the how does the pressure experienced b
Aneli [31]

Answer:

They experience the same pressure

Explanation:

To answer this question, we recall Pascal's, Law Pascal's law states that  an increase in pressure at a point in a confined cylinder containing a fluid, there is also an equal increase at all other points in that cylinder.

According to Pascal's law the pressure if the pressure expereienced by the larger diameter piston increases, the pressure experienced by the smaller diameter piston also increases by the same amount

However considering that pressure = Force/area F1/A1 =F2/A2

thus where A1 = πD²÷4 and A2 = πD²÷ 16 we have

we have F1×4/πD² = F2×16/πD² or F1 = 4× F2

They experience the same pressure but the larger cylinder delivers four times the force transmitted from he outside to the smaller cylinder

7 0
3 years ago
Part a the sun produces energy via fusion. one of the fusion reactions that occurs in the sun is 411h→42he+201e how much energy
Orlov [11]
The equation for the nuclear fusion reaction is,
4 ¹₁H → ₂⁴He + 2 ₁⁰e
Calculation of mass defect,
Δm = [mass of products - mass of reactants]
      = 4(1.00782) - [4.00260 + 2(0.00054858)]
      = 0.0275828 g/mole
Given that,
Mass of Hydrogen-1 = 2.58 g
The no. of moles of ₁¹H = 2.58 g / 1.00782 = 2.56 moles
Therefore, the mass defect for 2.58 g of ₁¹H is, 
= 2.56 moles * (0.0275828 g / 4) = 0.01765 x 10⁻³ kg
Energy for (0.01765 x 10⁻³ kg) is, 
= (0.01765 x 10⁻³ kg) (3.0 x 10⁸)² = 1.59 x 10¹² J
4 0
3 years ago
Read 2 more answers
How do scientists determine locations for drilling for natural gas? Where are many natural gas drill sites located? (Site 2)
Alchen [17]

Explanation:

By<em> </em><em>drilling</em><em> </em><em>several</em><em> </em><em>cores</em><em> </em><em>miles</em><em> </em><em>ap</em><em>art</em><em> </em><em>,</em><em> </em><em>geologist</em><em> </em><em>c</em><em>a</em><em>n</em><em> </em><em>correlate</em><em> </em><em>the</em><em> </em><em>rock</em><em> </em><em>units</em><em> </em><em>and</em><em> </em><em>create</em><em> </em><em>an</em><em> </em><em>image</em><em> </em><em> </em><em>what</em><em> </em><em>exists</em><em> </em><em>and</em><em> </em><em>where</em><em> </em><em>below</em><em> </em><em>the</em><em> </em><em>surfac</em><em>e</em><em>.</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>Combining</em><em> </em><em>this</em><em> </em><em>information</em><em> </em><em>with</em><em> </em><em>rocks</em><em> </em><em>exposed</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>surface</em><em> </em><em>,</em><em> </em><em>which</em><em> </em><em>can</em><em> </em><em>gives</em><em> </em><em>clues</em><em> </em><em>about</em><em> </em><em>rock</em><em> </em><em>orientation</em><em> </em><em>below</em><em>,</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>a</em><em> </em><em>powerful</em><em> </em><em>tool</em><em> </em><em>to</em><em> </em><em>locating</em><em> </em><em>oil</em><em> </em><em>and</em><em> </em><em>gas</em><em> </em><em>.</em>

5 0
3 years ago
Other questions:
  • The website of a popular stargazers club notes that on Wednesday the moon will rise at 6:23 PM and set at 6:12 PM on Thursday. W
    15·2 answers
  • How does the density or aluminum compare to the density of gold
    14·1 answer
  • Potato plants with a Jellyfish gene will glow when they need to be watered.
    14·2 answers
  • Convert 4.86 x 104g of Mg to moles.
    13·2 answers
  • Suzzane has type A- blood. Which thpe of blood could she receive in a blood transfusion?
    6·2 answers
  • Please help me with this question !!!
    14·1 answer
  • What volume would a sample of gas occupy in LITERS at 0.985 atmospheres and a volume of 3.65 liters if the pressure were raised
    7·1 answer
  • HELP ASAP!! is this the correct answer!
    14·2 answers
  • Please help me with questions 43, 44, and 45
    15·1 answer
  • How are organelles connected to cell theory?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!