i. When an acid reacts with metal, a salt and hydrogen are produced:
ii. When oxygen and metal react, metal oxide forms also known as rust
iii. Acid and water produce hydroxide ions
I think it’s d
If it’s wrong then I’m sorry
Answer:
mechanical weathering breaks rocks into smaller forms without any change in their composition whereas chemical weathering breaks down rocks by forming new minerals .
or simply mechanical weathering is the physical breakdown of rocks while chemical weathering is the breakdown of rocks through chemical reactions .
Answer:
The correct answer is 5.0 L
Explanation:
STP are defined as T=273 K and P= 1 atm
By using the ideal gas equation, we can calculate the number of moles (n) of the gas at a volume V=2.5 L:
PV= nRT
⇒n= (PV)/(RT) =(1 atm x 2,5 L)/(0.082 L.atm/K.mol x 273 K)= 0.112 mol
For a sample of argon gas, with the same number of moles (0.112 mol) but twice the temperature (T = 273 K x 2= 546 K):
V= (nRT)/P = (0.112 mol x 0.082 L.atm/K.mol x 546 K)/1 atm = 5.0 L
That is consistent with the fact that when a gas is heated, it expanses. So, if the temperature increases twice, the volume also increases twice.
Answer:
Substances can change phase—often because of a temperature change. At low temperatures, most substances are solid; as the temperature increases, they become liquid; at higher temperatures still, they become gaseous.
The process of a solid becoming a liquid is called melting. (an older term that you may see sometimes is fusion). The opposite process, a liquid becoming a solid, is called solidification. For any pure substance, the temperature at which melting occurs—known as the melting point—is a characteristic of that substance. It requires energy for a solid to melt into a liquid. Every pure substance has a certain amount of energy it needs to change from a solid to a liquid. This amount is called the enthalpy of fusion (or heat of fusion) of the substance, represented as ΔHfus. Some ΔHfus values are listed in Table 10.2 “Enthalpies of Fusion for Various Substances”; it is assumed that these values are for the melting point of the substance. Note that the unit of ΔHfus is kilojoules per mole, so we need to know the quantity of material to know how much energy is involved. The ΔHfus is always tabulated as a positive number. However, it can be used for both the melting and the solidification processes as long as you keep in mind that melting is always endothermic (so ΔH will be positive), while solidification is always exothermic (so ΔH will be negative).
Table 10.2 Enthalpies of Fusion for Various Substances
Explanation: