Answer: Spring tides occur when the moon is full or new. Earth, the moon, and the Sun are in a line. The moon’s gravity and the Sun’s gravity pull Earth’s crust and ocean water. This causes tides to be higher than normal.
At neap tide, the moon and the Sun are at right angles to each other. This happens during the first and third quarters of the lunar cycle. At neap tide, the Sun’s gravity and the moon’s gravity are balanced. High tides are lower; low tides are higher.
Explanation:
<u>i just took the Assignment !</u>
Answer:
Explanation:
The formula for kinetic energy Ke=1/2mv^2 where Ke is kinetic energy, m=mass, and v= velocity.
If the kinetic energy is increased that means that there must be an increase in mass or velocity. However, since the velocity is squared that means that velocity affects the kinetic energy of the object more than the mass does.
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
The answer should be ''all the above''
Answer:
There may be excess charges in the interior of the wire
The net electric field everywhere inside the wire is zero
The interior of the metal wire is neutral.
There may be excess charges on the surface of the wire.
There is no net flow of mobile electrons inside the wire.
Explanation:
For any metal wire in equilibrium position, there may be excess charges in the interior of the wire and the net electric field everywhere inside the wire is zero. Additionally, the interior of the metal wire is always neutral and there is likely to be excess charges on the surface of the wire. Moreover, it's important to note that for a metal wire in equilibrium, there is no net flow of mobile electrons inside the wire.