<span>Murphy's law is an adage or epigram that is typically stated as: Anything that can go wrong, will go wrong.
</span><span>
</span>
<h2>
a) Initial velocity = 83 ft/s</h2><h2>
b) Object's maximum speed = 99.4 ft/s</h2><h2>
c) Object's maximum displacement = 153.64 ft</h2><h2>
d) Maximum displacement occur at t = 2.59 seconds.</h2><h2>e)
The displacement is zero when t = 5.70 seconds</h2><h2>
f) Object's maximum height = 153.64 ft</h2>
Explanation:
We have velocity
v(t)= -32t + 83
Integrating
s(t) = -16t²+83t+C
At t = 0 displacement is 46 feet
46 = -16 x 0²+83 x 0+C
C = 46 feet
So displacement is
s(t) = -16t²+83t+46
a) Initial velocity is
v(0)= -32 x 0 + 83 = 83 ft/s
Initial velocity = 83 ft/s
b) Maximum velocity is when the object reaches ground, that is s(t) = 0 ft
Substituting
0 = -16t²+83t+46
t = 5.70 seconds
Substituting in velocity equation
v(t)= -32 x 5.70 + 83 = -99.4 ft/s
Object's maximum speed = 99.4 ft/s
c) Maximum displacement is when the velocity is zero
That is
-32t + 83 = 0
t = 2.59 s
Substituting in displacement equation
s(2.59) = -16 x 2.59²+83 x 2.59+46 = 153.64 ft
Object's maximum displacement = 153.64 ft
d) Maximum displacement occur at t = 2.59 seconds.
e) Refer part b
The displacement is zero when t = 5.70 seconds
f) Same as option d
Object's maximum height = 153.64 ft
I would say the correct answer is the third option. The area of the Earth that is most similar to the Sun's convection zone would be the mantle. The convection zone of the sun is its outermost layer where heat transfer by convection happens which is similar to the Earth's mantle.
Answer:
The wavelength is 754.2 nm.
Explanation:
Given that,
Diffraction pattern y= 1.35 mm
Width = 0.838 mm
Distance D= 75 cm
We need to calculate the wavelength
Using formula of diffraction pattern


Where, y = diffraction pattern
m = order
d = width
D = distance
Put the value into the formula



Hence, The wavelength is 754.2 nm.