Answer:
5.0 m/s
Explanation:
The horizontal motion of the salmon is uniform, so the horizontal component of the salmon's velocity is constant and it is

where u is the initial speed and
. The horizontal distance travelled by the salmon is

where d = 1.95 m and t is the time needed to reach the final point.
Re-arranging for t,
(1)
Along the vertical direction, the equation of motion is

where:
y = 0.311 m is the final height reached by the salmon
h = 0 is the initial height
is the vertical component of the initial velocity of the salmon
is the acceleration of gravity
t is the time
Substituting t as found in eq.(1), we get the equation

and we can solve this formula for u, the initial speed of the salmon:

After thorough researching, the mine tailings must be stored and disposed of carefully because they have lots of chemical and various toxic materials. They can also leach to the aquifers. The correct answer to the following given statement above is they have chemicals which are dangerous.
Answer:
Work done, W = 0.0219 J
Explanation:
Given that,
Force constant of the spring, k = 290 N/m
Compression in the spring, x = 12.3 mm = 0.0123 m
We need to find the work done to compress a spring. The work done in this way is given by :


W = 0.0219 J
So, the work done by the spring is 0.0219 joules. Hence, this is the required solution.
At the same speed because it will slow down as it approaches the peak then speed up as it goes down again
it will be going 15m/s when it gets to the same height if we neglect air resistance and the object doesn't hit something
Answer:
1.73 m/s²
Explanation:
Given:
Δx = 250 m
v₀ = 0 m/s
t = 17 s
Find: a
Δx = v₀ t + ½ at²
250 m = (0 m/s) (17 s) + ½ a (17 s)²
a = 1.73 m/s²