The bond formed between two or more electrons of different atoms is called a COVALENT BOND.
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
volume of 
Explanation:
Firstly balance the given chemical equation,

From the given balance equation it is clearly that,
2 mole of Li gives 1 mole of H2 gas
⇔
⇔
⇔
hence
3 mole of Li will give 1.5 mole H2 gas
therefore volume of gas produced from 3 mole Li at 
volume of H2=33.6 litre
Ooooh boy alright. So, this may or may not be a limited reactant problem so we need to first find out of it is.
First, how many moles of each substance are there
the molar mass of BCl3 is <span>117.17 grams so 37.5 g / 117.17 is ~ .32 mol.
The molar mass of H2O is 18.02 so 60 / 18.02 is ~ 3.33 mol.
Now, for every 1 mole of BCl3, there are 3 moles of HCl created. Therefore, BCl3 can create ~ .96 moles.
For every 3 moles of H2O, there are 3 moles of HCl created. Therefore, HCl can create ~3.33 moles.
But, there is not enough BCl3 to support that 3.33 moles, only enough for .96 moles, therefore BCl3 is the limiting reactant. Now, to answer the question, simply multiply .96 moles by the molar mass of HCl.
.96 x 36.46 = ~35 g</span>