Think, first, about the type of molecule or formula unit you have (covalent or ionic). In this case, it is a covalent molecule. You start with the carbon. You could say monocarbon, but if it is just said to be carbon it is assumed to be one. Then you take the prefix for 4 and tack it on to the beginning of the chlorine. For this, the name is carbon tetrachloride.
Answer:
b) Ion-dipole
Explanation:
Intermolecular forces are the forces of attraction or repulsion between molecules, they are significantly weaker than intramolecular forces like covalent or ionic bonds.
- <em>Hydrogen bonds</em> happen between a partially positively charged hydrogen and another partially negatively charged, it's a type of dipole-dipole interaction, one of the strongest among intermolecular forces.
- <em>Ion-dipole</em> involves an ion and polar molecule, its strength is proportional to the charge of the ion. It's stronger than hydrogen bonds because the ion and the polar molecule align so positive and negative charges are next to another allowing maximum attraction.
- <em>Dipole-dipole </em>is an interaction between two molecules that have permanent dipoles, aligning to increase attraction.
- <em>Ion-dipole</em> induced usually happens when a non-polar molecule interacts with an ion causing the molecule to be temporary partially charged. It's a weaker interaction.
- <em>Dipole- Induced Dipole</em>, like ion-dipole induced this interaction causes one of the two involved molecules to be temporary partially charged.
Considering this information we can conclude that Ion-Dipole interaction is the strongest force among intermolecular forces.
I hope this information is useful to you!
<span>A. Salt lowers the freezing point of water, which makes the melted snow on the road less likely to form ice.</span>
Answer:

Explanation:
To convert from representative particles to moles, Avogadro's Number: 6.02*10²³, which tells us the number of particles (atoms, molecules, etc.) in 1 mole of a substance.
We can use it in a ratio.

Multiply by the given number of molecules.

Flip the ratio so the molecules of water cancel out.



Divide.

The original number of molecules has 2 significant figures: 3 and 1, so our answer must have the same. For the number we calculated, that is the tenth place. The 4 in the hundredth place tells us to leave the 1.

There are about 5.1 moles of water in 3.1*10²⁴ molecules of water.